3 Numbers in A.P. whose 4th Powers are Sum of Four 4th Powers

From ProofWiki
Jump to navigation Jump to search

Theorem

The following triplets of integers in arithmetic sequence with common difference of $60$ can all be expressed as the sum of four $4$th powers:

$\tuple {8373, 8433, 8493}, \tuple {8517, 8577, 8637}, \ldots$


Proof

\(\ds 8373^4\) \(=\) \(\ds 4450^4 + 5500^4 + 5670^4 + 7123^4\)
\(\ds 8433^4\) \(=\) \(\ds 4730^4 + 4806^4 + 5230^4 + 7565^4\)
\(\ds 8493^4\) \(=\) \(\ds 524^4 + 4910^4 + 5925^4 + 7630^4\)


\(\ds 8517^4\) \(=\) \(\ds 1642^4 + 3440^4 + 6100^4 + 7815^4\)
\(\ds 8577^4\) \(=\) \(\ds 1050^4 + 2905^4 + 5236^4 + 8230^4\)
\(\ds 8637^4\) \(=\) \(\ds 3450^4 + 3695^4 + 5780^4 + 8012^4\)

$\blacksquare$


The internal structure of these numbers reveals an interesting pattern:

\(\ds 8373\) \(=\) \(\ds 3 \times 2791\)
\(\ds 8433\) \(=\) \(\ds 3^2 \times 937\)
\(\ds 8493\) \(=\) \(\ds 3 \times 19 \times 149\)


\(\ds 8517\) \(=\) \(\ds 3 \times 17 \times 169\)
\(\ds 8577\) \(=\) \(\ds 3^3 \times 953\)
\(\ds 8637\) \(=\) \(\ds 3 \times 2879\)


Sources