3 Numbers in A.P. whose 4th Powers are Sum of Four 4th Powers
Jump to navigation
Jump to search
Theorem
The following triplets of integers in arithmetic sequence with common difference of $60$ can all be expressed as the sum of four $4$th powers:
- $\tuple {8373, 8433, 8493}, \tuple {8517, 8577, 8637}, \ldots$
Proof
\(\ds 8373^4\) | \(=\) | \(\ds 4450^4 + 5500^4 + 5670^4 + 7123^4\) | ||||||||||||
\(\ds 8433^4\) | \(=\) | \(\ds 4730^4 + 4806^4 + 5230^4 + 7565^4\) | ||||||||||||
\(\ds 8493^4\) | \(=\) | \(\ds 524^4 + 4910^4 + 5925^4 + 7630^4\) |
\(\ds 8517^4\) | \(=\) | \(\ds 1642^4 + 3440^4 + 6100^4 + 7815^4\) | ||||||||||||
\(\ds 8577^4\) | \(=\) | \(\ds 1050^4 + 2905^4 + 5236^4 + 8230^4\) | ||||||||||||
\(\ds 8637^4\) | \(=\) | \(\ds 3450^4 + 3695^4 + 5780^4 + 8012^4\) |
$\blacksquare$
The internal structure of these numbers reveals an interesting pattern:
\(\ds 8373\) | \(=\) | \(\ds 3 \times 2791\) | ||||||||||||
\(\ds 8433\) | \(=\) | \(\ds 3^2 \times 937\) | ||||||||||||
\(\ds 8493\) | \(=\) | \(\ds 3 \times 19 \times 149\) |
\(\ds 8517\) | \(=\) | \(\ds 3 \times 17 \times 169\) | ||||||||||||
\(\ds 8577\) | \(=\) | \(\ds 3^3 \times 953\) | ||||||||||||
\(\ds 8637\) | \(=\) | \(\ds 3 \times 2879\) |
Sources
- Jul. 1973: Kermit Rose and Simcha Brudno: More About Four Biquadrates Equal One Biquadrate (Math. Comp. Vol. 27, no. 123: pp. 491 – 494) www.jstor.org/stable/2005655
- 1997: David Wells: Curious and Interesting Numbers (2nd ed.) ... (previous) ... (next): $8737$
- Weisstein, Eric W. "Diophantine Equation--4th Powers." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/DiophantineEquation4thPowers.html