Absolutely Symmetric Function/Examples
Jump to navigation
Jump to search
Examples of Absolutely Symmetric Functions
Arbitrary Example $1$
Let $f: \R^3 \to \R$ be the real-valued function defined as:
- $\forall \tuple {x, y, z} \in \R^3: \map f {x, y, z} = x^2 + y^2 + 2 x y z$
Then $f$ is an absolutely symmetric function.
Arbitrary Example $2$
Let $f: \R^2 \to \R$ be the real-valued function defined as:
- $\forall \tuple {x, y} \in \R^2: \map f {x, y} = x^2 + 2 x y + y^2$
Then $f$ is an absolutely symmetric function.