Addition of Integers is Primitive Recursive

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $a : \N^2 \to \N$ be defined as:

$\map a {m, n} = p$

where:

$m$ codes an integer $k$
$n$ codes an integer $\ell$
$p$ codes the integer $k + \ell$

Then $a$ is a primitive recursive function.


Proof



Define:

$\map a {m, n} = \begin{cases} \map {\sgn_\Z} k \times_\Z \paren {\size k + \size \ell}_\Z & : \map {\sgn_\Z} k = \map {\sgn_\Z} \ell \\ \map {\sgn_\Z} k \times_\Z \paren {\size k {\dot -} \size \ell}_\Z & : \map {\sgn_\Z} k \ne \map {\sgn_\Z} \ell \land \size k \ge \size \ell \\ \map {\sgn_\Z} \ell \times_\Z \paren {\size \ell {\dot -} \size k}_\Z & : \map {\sgn_\Z} k \ne \map {\sgn_\Z} \ell \land \size k < \size \ell \end{cases}$

where:

$\times_\Z$ denotes integer multiplication
$N_\Z$ denotes the code number for $N : \Z$
$\sgn_\Z$ denotes the signum function on $\Z$
$\dot -$ denotes cut-off subtraction

By:

it follows that $a$ is primitive recursive.

Now, we will show that $a$ satisfies the definition in the theorem statement.


First, suppose:

$\size k > \size \ell$

Then:

$\map {\sgn_\Z} {k + \ell} = \map {\sgn_\Z} k$.

If the signs of $k$ and $\ell$ match, then:

$\size {k + \ell} = \size k + \size \ell$

If they differ, then either:

$\ell = 0$

or: $k$ and $\ell$ have opposite signs.

Then:

$\size {k + \ell} = \size k - \size \ell$

in either case.

But since:

$\size k > \size \ell$

We have:

$\size k - \size \ell = \size k {\dot -} \size \ell$

In both of those cases, $\map a {m, n}$ matches the value.


It can be seen that, when:

$\size k < \size \ell$

the above holds with the roles of the two variables swapped.


Now, suppose:

$\size k = \size \ell$

If:

$\map {\sgn_\Z} k = \map {\sgn_\Z} \ell$

then:

$\map {\sgn_\Z} {k + \ell} = \map {\sgn_\Z} k = \map {\sgn_\Z} \ell$

and:

$\size {k + \ell} = \size k + \size \ell$

If:

$\map {\sgn_\Z} k \ne \map {\sgn_\Z} \ell$

then either:

One of the two is zero

or:

One is positive, and the other is negative

In either of the two cases, we can again use cut-off subtraction to get the correct result.


Since, in every case, the defined $a : \N^2 \to \N$ satisfies the definition, the result follows.

$\blacksquare$