Alternating Sum of Sequence of Odd Cubes over Fourth Power plus 4

From ProofWiki
Jump to navigation Jump to search

Theorem

\(\ds \sum_{k \mathop = 0}^n \dfrac {\paren {-1}^k \paren {2 k + 1}^3} {\paren {2 k + 1}^4 + 4}\) \(=\) \(\ds \frac {1^3} {1^4 + 4} - \frac {3^3} {3^4 + 4} + \frac {5^3} {5^4 + 4} - \cdots + \dfrac {\paren {-1}^n \paren {2 n + 1}^3} {\paren {2 n + 1}^4 + 4}\)
\(\ds \) \(=\) \(\ds \dfrac {\paren {-1}^n \paren {n + 1} } {4 \paren {n + 1}^2 + 1}\)


Proof

The proof proceeds by induction.

For all $n \in \Z_{\ge 0}$, let $\map P n$ be the proposition:

$\ds \sum_{k \mathop = 0}^n \dfrac {\paren {-1}^k \paren {2 k + 1}^3} {\paren {2 k + 1}^4 + 4} = \dfrac {\paren {-1}^n \paren {n + 1} } {4 \paren {n + 1}^2 + 1}$


Basis for the Induction

$\map P 0$ is the case:

\(\ds \sum_{k \mathop = 0}^0 \dfrac {\paren {-1}^k \paren {2 k + 1}^3} {\paren {2 k + 1}^4 + 4}\) \(=\) \(\ds \dfrac {\paren {-1}^0 \paren {2 \times 0 + 1}^3} {\paren {2 \times 0 + 1}^4 + 4}\)
\(\ds \) \(=\) \(\ds \dfrac {1 \times 1^3} {1^4 + 4}\)
\(\ds \) \(=\) \(\ds \dfrac 1 5\)
\(\ds \) \(=\) \(\ds \dfrac {\paren {-1}^0 \paren {0 + 1} } {4 \paren {0 + 1}^2 + 1}\)

Thus $\map P 0$ is seen to hold.


This is the basis for the induction.


Induction Hypothesis

Now it needs to be shown that, if $\map P {r - 1}$ is true, where $r \ge 1$, then it logically follows that $\map P r$ is true.


So this is the induction hypothesis:

$\ds \sum_{k \mathop = 0}^{r - 1} \dfrac {\paren {-1}^k \paren {2 k + 1}^3} {\paren {2 k + 1}^4 + 4} = \dfrac {\paren {-1}^r r} {4 r^2 + 1}$


from which it is to be shown that:

$\ds \sum_{k \mathop = 0}^r \dfrac {\paren {-1}^k \paren {2 k + 1}^3} {\paren {2 k + 1}^4 + 4} = \dfrac {\paren {-1}^r \paren {r + 1} } {4 \paren {r + 1}^2 + 1}$


Induction Step

This is the induction step:


\(\ds \sum_{k \mathop = 0}^r \dfrac {\paren {-1}^k \paren {2 k + 1}^3} {\paren {2 k + 1}^4 + 4}\) \(=\) \(\ds \sum_{k \mathop = 0}^{r - 1} \dfrac {\paren {-1}^k \paren {2 k + 1}^3} {\paren {2 k + 1}^4 + 4} + \dfrac {\paren {-1}^r \paren {2 r + 1}^3} {\paren {2 r + 1}^4 + 4}\)
\(\ds \) \(=\) \(\ds \dfrac {\paren {-1}^{r - 1} r} {4 r^2 + 1} + \dfrac {\paren {-1}^r \paren {2 r + 1}^3} {\paren {2 r + 1}^4 + 4}\) Induction Hypothesis and simplification
\(\ds \) \(=\) \(\ds \dfrac {\paren {-1}^{r - 1} r \paren {\paren {2 r + 1}^4 + 4} + \paren {-1}^r \paren {2 r + 1}^3 \paren {4 r^2 + 1} } {\paren {4 r^2 + 1} \paren {\paren {2 r + 1}^4 + 4} }\) common denominator


We refactorise the denominator:

\(\ds \paren {2 r + 1}^4 + 4\) \(=\) \(\ds 16 r^4 + 32 r^3 + 24 r^2 + 8 r + 1 + 4\)
\(\ds \) \(=\) \(\ds \paren {4 r^2 + 1} \paren {4 r^2 + 8 r + 5}\)
\(\ds \) \(=\) \(\ds \paren {4 r^2 + 1} \paren {4 \paren {r + 1}^2 + 1}\)

and so the denominator is seen to be:

$\paren {4 r^2 + 1}^2 \paren {4 \paren {r + 1}^2 + 1}$


Similarly, now the hard work has been done, for the numerator:

\(\ds \) \(\) \(\ds \paren {-1}^{r - 1} r \paren {\paren {2 r + 1}^4 + 4} + \paren {-1}^r \paren {2 r + 1}^3 \paren {4 r^2 + 1}\)
\(\ds \) \(=\) \(\ds \paren {-1}^{r - 1} r \paren {4 r^2 + 1} \paren {4 \paren {r + 1}^2 + 1} + \paren {-1}^r \paren {2 r + 1}^3 \paren {4 r^2 + 1}\)
\(\ds \) \(=\) \(\ds \paren {-1}^{r - 1} \paren {r \paren {4 r^2 + 1} \paren {4 \paren {r + 1}^2 + 1} - \paren {2 r + 1}^3 \paren {4 r^2 + 1} }\)
\(\ds \) \(=\) \(\ds \paren {-1}^{r - 1} \paren {4 r^2 + 1} \paren {r \paren {4 \paren {r + 1}^2 + 1} - \paren {2 r + 1}^3}\)


There exists a common factor of $\paren {4 r^2 + 1}$ in the numerator and the denominator, which can be cancelled, leaving:


\(\ds \sum_{k \mathop = 0}^r \dfrac {\paren {-1}^k \paren {2 k + 1}^3} {\paren {2 k + 1}^4 + 4}\) \(=\) \(\ds \dfrac {\paren {-1}^{r - 1} \paren {r \paren {4 \paren {r + 1}^2 + 1} - \paren {2 r + 1}^3} } {\paren {4 r^2 + 1} \paren {4 \paren {r + 1}^2 + 1} }\)
\(\ds \) \(=\) \(\ds \dfrac {\paren {-1}^{r - 1} \paren {4 r^3 + 8 r^2 + 5 r - 8 r^3 - 12 r^2 - 6 r - 1} } {\paren {4 r^2 + 1} \paren {4 \paren {r + 1}^2 + 1} }\) multiplying out numerator
\(\ds \) \(=\) \(\ds \dfrac {\paren {-1}^r \paren {4 r^3 + 4 r^2 + r + 1} } {\paren {4 r^2 + 1} \paren {4 \paren {r + 1}^2 + 1} }\) simplifying
\(\ds \) \(=\) \(\ds \dfrac {\paren {-1}^r \paren {4 r^2 + 1} \paren {r + 1} } {\paren {4 r^2 + 1} \paren {4 \paren {r + 1}^2 + 1} }\) factorising
\(\ds \) \(=\) \(\ds \dfrac {\paren {-1}^r \paren {r + 1} } {4 \paren {r + 1}^2 + 1}\) factorising


So $\map P r \implies \map P {r + 1}$ and the result follows by the Principle of Mathematical Induction.


Therefore:

$\ds \forall n \in \Z_{\ge 0}: \sum_{k \mathop = 0}^n \dfrac {\paren {-1}^k \paren {2 k + 1}^3} {\paren {2 k + 1}^4 + 4} = \dfrac {\paren {-1}^n \paren {n + 1} } {4 \paren {n + 1}^2 + 1}$

$\blacksquare$


Sources