Antitransitive Relation/Examples/Greater by One

From ProofWiki
Jump to navigation Jump to search

Example of Antitransitive Relation

Let $\RR$ denote the relation on the set of real numbers $\R$ defined as:

$x \mathrel \RR y \iff \text {$x$ is greater than $y$ by $1$}$

that is:

$x - y = 1$

Then $\RR$ is an antitransitive relation..


Proof

Let $x \mathrel \RR y$ and $y \mathrel \RR z$.

Then:

\(\text {(1)}: \quad\) \(\ds x - y\) \(=\) \(\ds 1\) Definition of $\RR$
\(\text {(2)}: \quad\) \(\ds y - z\) \(=\) \(\ds 1\) Definition of $\RR$
\(\ds \leadsto \ \ \) \(\ds x - z\) \(=\) \(\ds 2\) adding $(1)$ and $(2)$

Hence by definition:

$\mathop \neg x \mathrel \RR z$

$\blacksquare$


Sources