Approximation to Reciprocal times Derivative of Gamma Function

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\Gamma$ denote the gamma function.


For all $z \in \C$ such that $\cmod {\map \arg z} < \pi - \epsilon, \cmod z > 1$:

$\dfrac {\map {\Gamma'} z} {\map \Gamma z} = \ln z + \map {\OO_\epsilon} {z^{-1} }$

where:

$\map \OO {z^{-1} }$ denotes big-$\OO$ notation
the implied constant depends on $\epsilon$.




Proof

From Logarithmic Approximation of Error Term of Stirling's Formula for Gamma Function:

$\ln \map \Gamma z = \paren {z - \dfrac 1 2} \ln z - z + \dfrac {\ln 2 \pi} 2 + \map \OO {z^{-1} }$

Taking the derivative with respect to $z$:

$(1): \quad \dfrac {\map {\Gamma'} z} {\map \Gamma z} = \ln z - \dfrac 1 {2 z} + \dfrac \d {\d z} \map \OO {z^{-1} }$


Since there exists $\map c \epsilon > 0$ such that:

$\forall \size z > 1: -\dfrac c {\size {z^{-1} } } < \size {\map \OO {z^{-1} } } < \dfrac c {\size {z^{-1} } }$



it follows directly that the third term in $(1)$ is $\map \OO {z^{-1} }$.



$\blacksquare$