# Are All Perfect Numbers Even?/Progress/Form

Jump to navigation
Jump to search

## Theorem

An odd perfect number $n$ is of the form:

- $n = p^a q^b r^c \cdots$

where:

- $p, q, r, \ldots$ are prime numbers of the form $4 k + 1$ for some $k \in \Z_{>0}$
- $a$ is also of the form $4 k + 1$ for some $k \in \Z_{>0}$
- $b, c, \ldots$ are all even.

## Proof

This theorem requires a proof.You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by crafting such a proof.To discuss this page in more detail, feel free to use the talk page.When this work has been completed, you may remove this instance of `{{ProofWanted}}` from the code.If you would welcome a second opinion as to whether your work is correct, add a call to `{{Proofread}}` the page. |

## Historical Note

The form that an odd perfect number would need to take was proved by Leonhard Paul Euler.

## Sources

- 1986: David Wells:
*Curious and Interesting Numbers*... (previous) ... (next): $28$ - 1997: David Wells:
*Curious and Interesting Numbers*(2nd ed.) ... (previous) ... (next): $28$