Are All Perfect Numbers Even?/Progress/Form
Jump to navigation
Jump to search
Theorem
An odd perfect number $n$ is of the form:
- $n = p^a q^b r^c \cdots$
where:
- $p, q, r, \ldots$ are prime numbers of the form $4 k + 1$ for some $k \in \Z_{>0}$
- $a$ is also of the form $4 k + 1$ for some $k \in \Z_{>0}$
- $b, c, \ldots$ are all even.
Proof
![]() | This theorem requires a proof. You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by crafting such a proof. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{ProofWanted}} from the code.If you would welcome a second opinion as to whether your work is correct, add a call to {{Proofread}} the page. |
Historical Note
The form that an odd perfect number would need to take was proved by Leonhard Paul Euler.
Sources
- 1986: David Wells: Curious and Interesting Numbers ... (previous) ... (next): $28$
- 1997: David Wells: Curious and Interesting Numbers (2nd ed.) ... (previous) ... (next): $28$