# Area of Circle/Proof 4

Jump to navigation
Jump to search

## Theorem

The area $A$ of a circle is given by:

- $A = \pi r^2$

where $r$ is the radius of the circle.

## Proof

Expressing the area in polar coordinates:

\(\displaystyle \iint \rd A\) | \(=\) | \(\displaystyle \int_0^r \int_0^{2 \pi} t \rd t \rd \theta\) | |||||||||||

\(\displaystyle \) | \(=\) | \(\displaystyle \left.{\int_0^r t \theta}\right\vert_0^{2 \pi} \rd t\) | |||||||||||

\(\displaystyle \) | \(=\) | \(\displaystyle \int_0^r 2 \pi t \rd t\) | |||||||||||

\(\displaystyle \) | \(=\) | \(\displaystyle 2 \pi \paren {\left.{\frac 1 2 t^2}\right\vert_0^r}\) | |||||||||||

\(\displaystyle \) | \(=\) | \(\displaystyle 2 \pi \paren {\frac 1 2 r^2}\) | |||||||||||

\(\displaystyle \) | \(=\) | \(\displaystyle \pi r^2\) |

$\blacksquare$