Area of Circle/Proof 4

From ProofWiki
Jump to navigation Jump to search

Theorem

The area $A$ of a circle is given by:

$A = \pi r^2$

where $r$ is the radius of the circle.


Proof


Expressing the area in polar coordinates:

\(\displaystyle \iint \rd A\) \(=\) \(\displaystyle \int_0^r \int_0^{2 \pi} t \rd t \rd \theta\)
\(\displaystyle \) \(=\) \(\displaystyle \left.{\int_0^r t \theta}\right\vert_0^{2 \pi} \rd t\)
\(\displaystyle \) \(=\) \(\displaystyle \int_0^r 2 \pi t \rd t\)
\(\displaystyle \) \(=\) \(\displaystyle 2 \pi \paren {\left.{\frac 1 2 t^2}\right\vert_0^r}\)
\(\displaystyle \) \(=\) \(\displaystyle 2 \pi \paren {\frac 1 2 r^2}\)
\(\displaystyle \) \(=\) \(\displaystyle \pi r^2\)

$\blacksquare$