Axiom:Axiom of Dependent Choice/Right-Total

From ProofWiki
Jump to navigation Jump to search


Let $\RR$ be a binary relation on a non-empty set $S$.

Suppose that:

$\forall a \in S: \exists b \in S: b \mathrel \RR a$

that is, that $\RR$ is a right-total relation.

The axiom of dependent choice states that there exists a sequence $\sequence {x_n}_{n \mathop \in \N}$ in $S$ such that:

$\forall n \in \N: x_{n + 1} \mathrel \RR x_n$