Axiom:Meet Semilattice Filter Axioms

From ProofWiki
Jump to navigation Jump to search

Definition

Let $\struct {S, \wedge, \preccurlyeq}$ be a meet semilattice.

Let $F \subseteq S$ be a non-empty subset of $S$.


$F$ is a filter of $S$ if and only if $F$ satisifes the axioms:

\((\text {MSF 1})\)   $:$   $F$ is an upper section of $S$:      \(\ds \forall x \in F: \forall y \in S:\) \(\ds x \preccurlyeq y \implies y \in F \)      
\((\text {MSF 2})\)   $:$   $F$ is a subsemilattice of $S$:      \(\ds \forall x, y \in F:\) \(\ds x \wedge y \in F \)      

These criteria are called the meet semilattice filter axioms.