Axiom:Unitary Right Module Axioms
Jump to navigation
Jump to search
Definition
Let $\struct {R, +_R, \times_R}$ be a ring with unity whose unity is $1_R$.
Let $\struct {G, +_G}$ be an abelian group.
A unitary right module over $R$ is an $R$-algebraic structure with one operation $\struct {G, +_G, \circ}_R$ which satisfies the following conditions:
\((\text {URM} 1)\) | $:$ | Scalar Multiplication Right Distributes over Module Addition | \(\ds \forall \lambda \in R: \forall x, y \in G:\) | \(\ds \paren {x +_G y} \circ \lambda \) | \(\ds = \) | \(\ds \paren {x \circ \lambda} +_G \paren {y \circ \lambda} \) | |||
\((\text {URM} 2)\) | $:$ | Scalar Multiplication Left Distributes over Scalar Addition | \(\ds \forall \lambda, \mu \in R: \forall x \in G:\) | \(\ds x \circ \paren {\lambda +_R \mu} \) | \(\ds = \) | \(\ds \paren {x \circ \lambda} +_G \paren {x\circ \mu} \) | |||
\((\text {URM} 3)\) | $:$ | Associativity of Scalar Multiplication | \(\ds \forall \lambda, \mu \in R: \forall x \in G:\) | \(\ds x \circ \paren {\lambda \times_R \mu} \) | \(\ds = \) | \(\ds \paren {x \circ \lambda} \circ \mu \) | |||
\((\text {URM} 4)\) | $:$ | Unity of Scalar Ring | \(\ds \forall x \in G:\) | \(\ds x \circ 1_R \) | \(\ds = \) | \(\ds x \) |
These stipulations are called the unitary right module axioms.
Also see
Sources
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): module
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): module