Bernoulli's Equation/y' - (1 over x + 2 x^4) y = x^3 y^2

From ProofWiki
Jump to navigation Jump to search

Theorem

The first order ODE:

$(1): \quad y' - \paren {\dfrac 1 x + 2 x^4} y = x^3 y^2$

has the general solution:

$y = \dfrac {2 x} {C \map \exp {-\dfrac {2 x^5} 5} - 1}$


Proof

It can be seen that $(1)$ is in the form:

$\dfrac {\d y} {\d x} + \map P x y = \map Q x y^n$

where:

$\map P x = -\paren {\dfrac 1 x + 2 x^4}$
$\map Q x = x^3$
$n = 2$

and so is an example of Bernoulli's equation.


By Solution to Bernoulli's Equation it has the general solution:

$(3): \quad \ds \frac {\map \mu x} {y^{n - 1} } = \paren {1 - n} \int \map Q x \, \map \mu x \rd x + C$

where:

$\map \mu x = e^{\paren {1 - n} \int \map P x \rd x}$


Thus $\map \mu x$ is evaluated:

\(\ds \paren {1 - n} \int \map P x \rd x\) \(=\) \(\ds \paren {1 - 2} \int -\paren {\dfrac 1 x + 2 x^4} \rd x\)
\(\ds \) \(=\) \(\ds \ln x + \dfrac {2 x^5} 5\)
\(\ds \) \(=\) \(\ds \map \ln {x \exp \dfrac {2 x^5} 5}\)
\(\ds \leadsto \ \ \) \(\ds \map \mu x\) \(=\) \(\ds e^{\map \ln {x \exp \frac {2 x^5} 5} }\)
\(\ds \) \(=\) \(\ds x \exp \dfrac {2 x^5} 5\)


and so substituting into $(3)$:

\(\ds \frac x y \exp \dfrac {2 x^5} 5\) \(=\) \(\ds \paren {1 - 2} \int x^3 x \exp \dfrac {2 x^5} 5 \rd x\)
\(\ds \) \(=\) \(\ds -\int x^4 \exp \dfrac {2 x^5} 5 \rd x\)
\(\ds \) \(=\) \(\ds -\frac {\exp \dfrac {2 x^5} 5} 2 + \frac C 2\) by using the substitution $w = x^5$
\(\ds \leadsto \ \ \) \(\ds \frac x y\) \(=\) \(\ds \frac C 2 \map \exp {-\dfrac {2 x^5} 5} - \frac 1 2\)
\(\ds \leadsto \ \ \) \(\ds \frac 1 y\) \(=\) \(\ds \frac C {2 x} \map \exp {-\dfrac {2 x^5} 5} - \frac 1 {2 x}\)
\(\ds \) \(=\) \(\ds \frac {C \map \exp {-\dfrac {2 x^5} 5} - 1} {2 x}\)
\(\ds \leadsto \ \ \) \(\ds y\) \(=\) \(\ds \frac {2 x} {C \map \exp {-\dfrac {2 x^5} 5} - 1}\)


Hence the general solution to $(1)$ is:

$y = \dfrac {2 x} {C \map \exp {-\dfrac {2 x^5} 5} - 1}$

$\blacksquare$