Beta Function of Real Number with 1
Jump to navigation
Jump to search
Theorem
Let $\Beta \left({x, y}\right)$ denote the Beta function.
Then:
- $\Beta \left({x, 1}\right) = \Beta \left({1, x}\right) = \dfrac 1 x$
Proof
By definition:
\(\ds \Beta \left({x, 1}\right)\) | \(=\) | \(\ds \int_0^1 t^{x - 1} \left({1 - t}\right)^{1 - 1} \rd t\) | Definition of Beta Function | |||||||||||
\(\ds \) | \(=\) | \(\ds \int_0^1 t^{x - 1} \rd t\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \int_0^1 t^{x - 1} \rd t\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \left[{\frac {t^x} x}\right]_0^1\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 x - \frac 0 x\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 x\) |
$\Box$
\(\ds \Beta \left({1, x}\right)\) | \(=\) | \(\ds \int_0^1 t^{1 - 1} \left({1 - t}\right)^{x - 1} \rd t\) | Definition of Beta Function | |||||||||||
\(\ds \) | \(=\) | \(\ds \int_0^1 \left({1 - t}\right)^{x - 1} \rd t\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \int_1^0 -\left({z}\right)^{x - 1} \rd z\) | Integration by Substitution | |||||||||||
\(\ds \) | \(=\) | \(\ds -\left[{\frac {z^x} x}\right]_1^0\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds -\frac 0 x + \frac 1 x\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 x\) |
$\blacksquare$
Sources
- 1997: Donald E. Knuth: The Art of Computer Programming: Volume 1: Fundamental Algorithms (3rd ed.) ... (previous) ... (next): $\S 1.2.6$: Binomial Coefficients: Exercise $40 \ \text{(a)}$