# Binomial Theorem/Examples/(1 + x)^7

## Example of Use of Binomial Theorem

$\paren {1 + x}^7 = 1 + 7 x + 21 x^2 + 35 x^3 + 35 x^4 + 21 x^5 + 7 x^6 + x^7$

## Proof

 $\ds \paren {1 + x}^7$ $=$ $\ds \sum_k \binom 7 k x^k 1^{7 - k}$ Binomial Theorem $\ds$ $=$ $\ds \binom 7 0 x^0 + \binom 7 1 x^1 + \binom 7 2 x^2 + \binom 7 3 x^3 + \binom 7 4 x^4 + \binom 7 5 x^5 + \binom 7 6 x^6 + \binom 7 7 x^7$ Outside of the range $0 \le k \le 7$, $\dbinom 7 k = 0$ $\ds$ $=$ $\ds 1 + 7 x + 21 x^2 + 35 x^3 + 35 x^4 + 21 x^5 + 7 x^6 + x^7$

As can be seen, the digits are those from the $7$th row of Pascal's triangle:

$\begin{array}{r|rrrrrrrrrr} n & \binom n 0 & \binom n 1 & \binom n 2 & \binom n 3 & \binom n 4 & \binom n 5 & \binom n 6 & \binom n 7 & \binom n 8 & \binom n 9 & \binom n {10} & \binom n {11} & \binom n {12} \\ \hline 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2 & 1 & 2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 3 & 1 & 3 & 3 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 4 & 1 & 4 & 6 & 4 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 5 & 1 & 5 & 10 & 10 & 5 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 6 & 1 & 6 & 15 & 20 & 15 & 6 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 7 & 1 & 7 & 21 & 35 & 35 & 21 & 7 & 1 & 0 & 0 & 0 & 0 & 0 \\ 8 & 1 & 8 & 28 & 56 & 70 & 56 & 28 & 8 & 1 & 0 & 0 & 0 & 0 \\ 9 & 1 & 9 & 36 & 84 & 126 & 126 & 84 & 36 & 9 & 1 & 0 & 0 & 0 \\ 10 & 1 & 10 & 45 & 120 & 210 & 252 & 210 & 120 & 45 & 10 & 1 & 0 & 0 \\ 11 & 1 & 11 & 55 & 165 & 330 & 462 & 462 & 330 & 165 & 55 & 11 & 1 & 0 \\ 12 & 1 & 12 & 66 & 220 & 495 & 792 & 924 & 792 & 495 & 220 & 66 & 12 & 1 \\ \end{array}$

$\blacksquare$