Binomial Theorem/Extended
Jump to navigation
Jump to search
Theorem
Let $r, \alpha \in \C$ be complex numbers.
Let $z \in \C$ be a complex number such that $\left|{z}\right| < 1$.
Then:
- $\displaystyle \paren {1 + z}^r = \sum_{k \mathop \in \Z} \dbinom r {\alpha + k} z^{\alpha + k}$
where $\dbinom r {\alpha + k}$ denotes a binomial coefficient.
Proof
Sources
- 1997: Donald E. Knuth: The Art of Computer Programming: Volume 1: Fundamental Algorithms (3rd ed.) ... (previous) ... (next): $\S 1.2.6$: Binomial Coefficients: Exercise $42$ (Solution)