Binomial Theorem Approximations/Examples/Arbitrary Example 1
Jump to navigation
Jump to search
Example of Binomial Theorem Approximation
- $\paren {1 \cdotp 0 6}^{1/3} \approx 1 \cdotp 019613$
to $6$ decimal places.
Proof
![]() | Although this article appears correct, it's inelegant. There has to be a better way of doing it. In particular: Appallingly non-rigorous. Verbatim from the book. You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by redesigning it. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Improve}} from the code.If you would welcome a second opinion as to whether your work is correct, add a call to {{Proofread}} the page. |
\(\ds \paren {1 \cdotp 0 6}^{1/3}\) | \(=\) | \(\ds \paren {1 + 0 \cdotp 06}^{1/3}\) | ||||||||||||
\(\ds \) | \(\approx\) | \(\ds 1 + \dfrac 1 3 \paren {0 \cdotp 06} + \dfrac {\paren {\frac 1 3} \paren {-\frac 2 3} } {2!} \paren {0 \cdotp 06}^2 + \dfrac {\paren {\frac 1 3} \paren {-\frac 2 3} \paren {-\frac 5 3} } {3!} \paren {0 \cdotp 06}^3 + \dfrac {\paren {\frac 1 3} \paren {-\frac 2 3} \paren {-\frac 5 3} \paren {-\frac 7 3} } {4!} \paren {0 \cdotp 06}^4\) | ||||||||||||
\(\ds \) | \(\approx\) | \(\ds 1 + 0 \cdotp 02 - 0 \cdotp 0004 + 0 \cdotp 000133 - 0 \cdotp 00000053\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 1 \cdotp 0196128\) | ||||||||||||
\(\ds \) | \(\approx\) | \(\ds 1 \cdotp 019613\) |
$\blacksquare$
Sources
- 1953: L. Harwood Clarke: A Note Book in Pure Mathematics ... (previous) ... (next): $\text I$. Algebra: The Binomial Theorem: Approximations: Example $1$.