Book:François Le Lionnais/Les Nombres Remarquables

From ProofWiki
Jump to navigation Jump to search

François Le Lionnais and Jean Brette: Les Nombres Remarquables

Published $\text {1983}$, Hermann

ISBN 2-7056-1407-9.


In English:

Remarkable Numbers


Subject Matter


Contents

Prélude
Thème et variations
Interlude
Postlude


Next


Errata

Lehmer's Constant

$0,59263 27182 \ldots$:
  • Constante de Lehmer (1938)
$= \map {\operatorname {cotg} } {\operatorname {Arcotg} 1 - \operatorname {Arcotg} 3 + \operatorname {Arcotg} {13} - \operatorname {Arcotg} {183} + \operatorname {Arcotg} {33973} - \dotsb + \paren {-1}^n \operatorname {Arcotg} u_n - \dotsb}$. La suite $u_n$ est définie par $u_0 = 1; u_{n + 1} = u_n^2 + u_n + 1$.


Euler-Gompertz Constant

$0,59634 7355 \ldots$:

The section title is given as:

$0,59634 7355 \ldots$


Mercator's Constant

$0,69314 7805 \ldots$:

The section title is given as:

$0,69314 7805 \ldots$


Kepler's Conjecture (Densest Sphere Packing)

$0,77963 55700 \ldots$:
  • $\sqrt {18} \paren {\operatorname {Arcos} 1/3 - \pi / 3}$
Le meilleur majorant connu pour la densité d'un empilement de sphères dans $R^3$.


Bounds on Number of Odd Terms in Pascal's Triangle

$0,81256 6 \ldots$:
  • Soit $P_n$ le nombre de termes impairs dans le $n$ premieres lignes du triangle de Pascal.
Alors $0,812 \ldots < P_n / n^{\Log 2 / \Log 3} < 1$.


Riemann Zeta Function of $4$

$1,08232 3237 \ldots$:

The section title is given as:

$1,08232 3237 \ldots$


First Lemniscate Constant

$1,31102 87771 46059 90523 \ldots$:
Constante de la lemniscate. Elle est égale à :
$\dfrac 1 2 \displaystyle \int_0^1 \dfrac {\d x} {1 - x^4} = \dfrac {\map {\Gamma^2} {1/4} } {4 \sqrt {2 \pi} }$


Lemniscate of Bernoulli: Geometric Definition

$1,31102 87771 46059 90523 \ldots$:
La lemniscate est l'ensemble des points $M$ du plan tels que le produit des distances à deux points fixes $P_1$, $P_2$ est $P_1 M \cdot P_2 M = C^{te} = \sqrt {P_1 P_2}$.


Sources


Source work progress

The full documentation of both $0$ and $1$ has been skipped, through laziness.