Book:Gary Cornell/Modular Forms and Fermat's Last Theorem
Jump to navigation
Jump to search
Gary Cornell, Joseph H. Silverman and Glenn Stevens: Modular Forms and Fermat's Last Theorem
Published $\text {1997}$, Springer
- ISBN 0-387-98998-6
Contents
- Preface
- Contributors
- Schedule of Lectures
- Introduction
- CHAPTER I: An Overview of the Proof of Fermat's Last Theorem: GLENN STEVENS
- $\S 1$. A remarkable elliptic curve
- $\S 2$. Galois representations
- $\S 3$. A remarkable Galois representation
- $\S 4$. Modular Galois representations
- $\S 5$. The Modularity Conjecture and Wiles's Theorem
- $\S 6$. The proof of Fermat's Lmst Theorem
- $\S 7$. The proof of Wiles's Theorem
- References
- CHAPTER II: A Survey of the Arithmetic Theory of Elliptic Curves: JOSEPH H. SILVERMAN
- $\S 1$. Basic definitions
- $\S 2$. The group law
- $\S 3$. Singular cubics
- $\S 4.$ Isogenies
- $\S 5$. The endomorphism ring
- $\S 6$. Torsion points
- $\S 7$. Galois representations attached to $E$
- $\S 8$. The Weil pairing
- $\S 9$. Elliptic cllrsres over finite fields
- $\S 10$. Elliptic curves over $\C$ and elliptic functions
- $\S 11$. The formal group of an elliptic curve
- $\S 12$. Elliptic curve over local fields
- $\S 13$. The Selmer and Shafarevich-Tate groups
- $\S 14$. Discriminants, conductors, and $L$-series
- $\S 15$. Duality theory
- $\S 16$. Rational torsion and the image of Galois
- $\S 17$. Tate curves
- $\S 18$. Heights and descent
- $\S 19$. The conjecture of Birch and Swinnerton-Dyer
- $\S 20$. Complex multiplication
- $\S 21$. Integral points
- References
- CHAPTER III: Modular Curves, Hecke Correspondences, and $L$-functions: DAVID E. ROHRLICH
- $\S 1$. Modular curves
- $\S 2$. The Hecke correspondences
- $\S 3$. $L$-functions
- References
- CHAPTER IV: Galois Cohomology: LAWRENCE C. WASHINGTON
- $\S 1$. $H^0$, $H^1$ and $H^2$
- $\S 2$. Preliminary results
- $\S 3$. Local Tate duality
- $\S 4$. Extensions and deformations
- $\S 5$. Generalized Selmer groups
- $\S 6$. Local conditions
- $\S 7$. Conditions at $p$
- $\S 8$. Proof of theorem 2
- References
- CHAPTER V: Finite Flat Group Schemes JOHN TATE
- Introduction
- $\S 1$. Group objects in a category
- $\S 2$. Group schemes. Examples
- $\S 3$. Finite flat group schemes; passage to quotient
- $\S 4$. Raynaud's results on commutative p-group schemes
- References
- CHAPTER VI: Three Lectures on the Modularity of $\overline \rho_{E, 3}$ and the Langlands Reciprocity Conjecture: STEPHEN GELBART
- Lecture I. The modularity of $\overline \rho_{E, 3}$ and automorphic representations of weight one
- $\S 1$. The modularity of $\overline \rho_{E, 3}$
- $\S 2$. Automorphic representations of weight one
- Lecture II. The Langlands program: Some results and methods
- $\S 3$. The local Langlands correspondence for $GL(2)$
- $\S 4$. The Langlands reciprocity conjecture (LRC)
- $\S 5$. The Langlands functionality principle theory and results
- Lecture III. Proof of the Langlands-Tunnell theorem
- $\S 6$. Base change theory
- $\S 7$. Application to Artin's conjecture
- References
- Lecture I. The modularity of $\overline \rho_{E, 3}$ and automorphic representations of weight one
- CHAPTER VII: Serre's Conjectures: BAS EDIXHOVEN
- $\S 1$. Serre's conjecture: statement and results
- $\S 2$. The cases we need
- $\S 3$. Weight two, trivial character and square free level
- $\S 4$. Dealing with the Langlands-Tunnell form
- References
- CHAPTER VIII: An Introduction to the Deformation Theory of Galois Representations: BARRY MAZUR
- Chapter I. Galois representations
- Chapter II. Grotlp representations
- Chapter III. The deformation theory for Galois representations
- Chapter IV. Functors and representatively
- Chapter V. Zariski tangent spaces and deformation problems subject to "conditions"
- Chapter VI. Back to Galois representations
- References
- CHAPTER IX: Explicit Construction of Universal Deformation Rings: BART DE SMIT AND HENDRIK W. LENSTRA, JR.
- $\S 1$. Introduction
- $\S 2$. Main results
- $\S 3$. Lifting homomorphisms to matrix groups
- $\S 4$. The condition of absolute irreducibility
- $\S 5$. Projective limits
- $\S 6$. Restrictions on deformations
- $\S 7$. Relaxing the absolute irreducibility condition
- References
- CHAPTER X: Hecke Algebras and the Gorenstein Property: JACQUES TILOUINE
- $\S 1$. The Gorenstein property
- $\S 2$. Hecke algebras
- $\S 3$. The main theorem
- $\S 4$. Strategy of the proof of theorem 3.4
- $\S 5$. Sketch of the proof
- Appendix
- References
- CHAPTER XI: Criteria for Complete Intersections: BART DE SMIT, KARL RUBIN, AND RENÉ SCHOOF
- Introduction
- $\S 1$. Preliminaries
- $\S 2$. Complete intersections
- $\S 3$. Proof of Criterion I
- $\S 4$. Proof of Criterion II
- Bibliography
- CHAPTER XII: $\ell$-adic Modular Deformations and Wiles's "Main Conjecture": FRED DIAMOND AND KENNETH A. RIBET
- $\S 1$. Introduction
- $\S 2$. Strategy
- $\S 3$. The "Main Coniecture"
- $\S 4$. Reduction to the case \Sigma = \varnothing
- $\S 5$. Epilogue
- Bibliography
- CHAPTER XIII: The Flat Deformation Functor: BRIAN CONRAD
- Introduction
- $\S 0$. Notation
- $\S 1$. Motivation and flat representations
- $\S 2$. Defining the functor
- $\S 3$. Local Galois cohomology and deformation theory
- $\S 4$. Fontaine's approach to finite flat group schemes
- $\S 5$. Applications to flat deformations
- References
- CHAPTER XIV: Hecke Rings and Universal Deformation Rings: EHUD DE SHALIT
- $\S 1$. Introduction
- $\S 2$. An outline of the proof
- $\S 3$. Proof of proposition 10 - On the structure of the Hecke algebra
- $\S 4$. Proof of proposition 11 - On the structure of the universal deformation ring
- $\S 5$. Conclusion of the proof: Some group theory
- Bibliography
- CHAPTER XV: Explicit Families of Elliptic Curves with Prescribed Mod $N$ Representations: ALICE SILVERBERG
- Introduction
- Part 1. Elliptic curves with the same mod $N$ representation
- $\S 1$. Modular curves and elliptic modular surfaces of level $N$
- $\S 2$. Twists of $Y_N$ and $W_N$
- $\S 3$. Model for $W$ when $N = 3$, $4$, or $5$
- $\S 4$. Level 4
- Part 2. Explicit families of modular elliptic curves
- $\S 5$. Modular $j$ invariants
- $\S 6$. Semistable reduction
- $\S 7$. Mod 4 representations
- $\S 8$. Torsion subgroups
- References
- CHAPTER XVI: Modularity of Mod 5 Representations: KARL RUBIN
- Introduction
- $\S 1$. Preliminaries: Group theory
- $\S 2$. Preliminaries: Modular curves
- $\S 3$. Proof of the irreducibility theorem (Theorem 1)
- $\S 4$. Proof of the modularity theorem (Theorem 2)
- $\S 5$. Mod 5 representations and elliptic curves
- References
- CHAPTER XVII: An Extension of Wiles' Results: FRED DIAMOND
- $\S 1$. Introduction
- $\S 2$. Local representations mod $\ell$
- $\S 3$. Minimally ramified liftings
- $\S 4$. Universal deformation rings
- $\S 5$. Hecke algebras
- $\S 6$. The main results
- $\S 7$. Sketch of proof
- References
- APPENDIX TO CHAPTER XVII: Classification of $\overline \rho_{E, \ell}$ by the $j$ Invariant of $E$: FRED DIAMOND AND KENNETH KRAMER
- CHAPTER XVIII: Class Field Theory and the First Case of Fermat's Last Theorem: HENDRIK W. LENSTRA, JR. AND PETER STEVENHAGEN
- CHAPTER XIX: Remarks on the History of Fermat's Last Theorem 1844 to 1984: MICHAEL ROSEN
- Introduction
- $\S 1$. Fermat's last theorem for polynomials
- $\S 2$. Kummer's work on cyclotomic melds
- $\S 3$. Fermat's last theorem for regular primes and certain other cases
- $\S 4$. The structure of the $p$-class group
- $\S 5$. Suggested readings
- Appendix A: Kummer congruence and Hilbert's theorem 94
- Bibliography
- CHAPTER XX: On Ternary Equations of Fermat Type and Relations with Elliptic Curves: GERHARD FREY
- $\S 1$. Conjectures
- $\S 2$. The generic case
- $\S 3$. $K = \Q$
- References
- CHAPTER XXI: Wiles' Theorem and the Arithmetic of Elliptic Curves: HENRI DARMON
- $\S 1$. Prelude: plane conics, Fermat and Gauss
- $\S 2$. Elliptic curves and Wiles' theorem
- $\S 3$. The special values of $L(E / \Q, s)$ at $s = 1$
- $\S 4$. The Birch and Swinnerton-Dyer conjecture
- References
- Index