Book:H. Jerome Keisler/Mathematical Logic and Computability
Jump to navigation
Jump to search
H. Jerome Keisler and Joel Robbin: Mathematical Logic and Computability
Published $\text {1996}$, McGraw-Hill
- ISBN 0-07-114426-9
Subject Matter
Contents
- Preface
- 1. Propositional Logic
- 1.1 Introduction
- 1.2 Syntax of Propositional Logic
- 1.3 Induction on Length of Wffs
- 1.4 Main Connective
- 1.5 Semantics of Propositional Logic
- 1.6 Truth Tables and Tautologies
- 1.7 Tableaus
- 1.8 Soundness
- 1.9 Finished Sets
- 1.10 Completeness
- 1.11 Compactness
- 1.12 Valid Arguments
- 1.13 Tableau Problems (TAB1)
- 1.14 Exercises
- 2. Pure Predicate Logic
- 2.1 Introduction
- 2.2 Syntax of Predicate Logic
- 2.3 Free and Bound Variables
- 2.4 Semantics of Predicate Logic
- 2.5 Graphs
- 2.6 Tableaus
- 2.7 Soundness
- 2.8 Finished sets
- 2.9 Completeness
- 2.10 Equivalence Relations
- 2.11 Order Relations
- 2.12 Set Theory
- 2.13 Tableaus and Mathematical Proofs
- 2.14 PREDCALC Problems (PRED2)
- 2.15 Tableau Problems (TAB3)
- 2.16 Exercises
- 3. Full Predicate Logic
- 3.1 Syntax
- 3.2 Semantics
- 3.3 Tableaus
- 3.4 Soundness
- 3.5 Completeness
- 3.6 Theory of Groups
- 3.7 Peano Arithmetic
- 3.8 Some Applications of Compactness
- 3.9 Tableau Problems (TAB4)
- 3.10 Exercises
- 4. Computable Functions
- 4.1 Introduction
- 4.2 Numerical Functions and Relations
- 4.3 The Unlimited Register Machine
- 4.4 RM computability
- 4.5 Examples of RM-computable Functions
- 4.6 Gödel Numbers, Extract, and Put
- 4.7 The Advanced RM
- 4.8 Closure Theorems
- 4.9 Universal RM Programs
- 4.10 Church's Thesis
- 4.11 The Halting Problem
- 4.12 Church's Theorem
- 4.13 Simple Gnumber Problems (GNUM5)
- 4.14 Advanced Gnumber Problems (GNUM6)
- 4.15 Exercises
- 5. The Incompleteness Theorems
- 5.1 Coding Tableaus
- 5.2 Definability and Representability
- 5.3 The Equivalence Theorem
- 5.4 Computable Implies Representable
- 5.5 First Incompleteness Theorem
- 5.6 Gödel's Original Incompleteness Proof
- 5.7 Gödel-Rosser Theorem
- 5.8 Provability and Modal Logic
- 5.9 Modal Systems and Tableaus
- 5.10 First Incompleteness Theorem Revisited
- 5.11 Second Incompleteness Theorem
- 5.12 Modal Tableau Problems (TAB7)
- 5.13 Exercises
- A. Sets and Functions
- A.1 Sets
- A.2 Boolean Operations
- A.3 Functions
- A.4 Composition and Restriction
- A.5 Identity, One-one, and Onto Functions
- A.6 Cardinality
- A.7 Inverses
- A.8 Cartesian Product
- A.9 Graphing Functions
- A.10 Finite Sequences
- A.11 Permutations
- A.12 Induction
- B. Listings
- B.1 Simple GNUMBER Programs
- B.2 Advanced RM programs
- B.3 Pseudocode for PARAM
- B.4 PARAM.GN listing
- B.5 Pseudocode for NXSTATE and UNIV
- B.6 NXSTATE0.GN listing
- B.7 UNIV.GN listing
- C. The Logiclab Package
- D. TABLEAU - Tableau Editor for DOS
- D.1 Introduction
- D.2 Getting Started
- D.3 Title Screen
- D.4 Hypothesis Mode
- D.4.1 Commands in Hypothesis Mode
- D.4.2 Propositional Logic
- D.4.3 Predicate Logic
- D.4.4 Moving Within a Formula
- D.4.5 Size Limit for Formulas
- D.5 Tableau Mode
- D.5.1 Moving Within the Tableau
- D.5.2 Mouse
- D.5.3 Commands in Tableau Mode
- D.5.4 Propositional Logic
- D.5.5 Predicate Logic
- D.5.6 Predicate Logic with Equality
- D.5.7 Size Limit for Substitutions
- D.6 Map Mode
- D.7 The Modal Logic Option
- D.8 Changing Directories
- E. TABWIN - Tableau Editor for Windows (R)
- E.1 Introduction
- E.2 File Menu
- E.3 View Menu
- E.4 Entering Hypotheses
- E.5 Viewing Tableaus
- E.6 Building Tableaus
- F COMPLETE - Tableau Completer for DOS
- G COMPWIN - Tableau Completer for Windows (R)
- G.1 Introduction
- G.2 File Menu
- G.3 View Menu
- G.4 Building a Finished Tableau
- G.5 Other Commands
- H. PREDCALC - Predicate Calculator for DOS
- H.1 Introduction
- H.2 Getting Started
- H.3 Title Screen
- H.4 Display Modes
- H.5 Goals
- H.6 The Calculator Pad
- H.6.1 The Time Counter
- H.6.2 Moving Within the Calculator Pad
- H.6.3 The Help Window
- H.6.4 Mouse
- H.6.5 Using the Calculator Buttons
- H.7 The Letter Commands
- H.8 Changing Directories
- I. PREDWIN - Predicate Calculator for Windows (R)
- I.1 Introduction
- I.2 Goals
- I.3 The Help Menu
- I.4 The Calculator Pad
- I.5 The File Menu
- I.6 The View Menu
- I.7 The Options Menu
- J. GNUMBER - Gödel Numberer for DOS
- J.1 Introduction
- J.2 Getting Started
- J.3 Title Screen
- J.4 Execution Mode
- J.4.1 Viewing More Instructions or Registers
- J.4.2 Execution Mode Commands
- J.5 Program Mode
- J.5.1 Moving Within the Screen
- J.5.2 Commands in the Program Mode
- J.6 Instruction Editor
- J.6.l Register Machine Instruction Letters
- J.6.2 Entering Register Machine Instructions
- J.6.3 Register Machine Program Files
- J.6.4 Advanced Instruction Letters
- J.7 Register Mode
- J.7.l Moving Within the Registers
- J.7.2 Entering a Number into a Register
- J.7.3 Exploring a Register
- J.7.4 Register Mode Commands
- J.7.5 Advanced Register Mode Commands
- J.8 Changing Directories
- K GNUMWIN - Gödel Numberer for Windows (R)
- K.1 Introduction
- K.2 Program Execution
- K.3 Register Machine Instructions
- K.4 File Menu
- K.5 Program Menu
- K.6 The Registers Menu
- K.7 Windows Menu
- K.8 Options Menu
- K.9 Step Command and Go Menu
- Bibliography
- Index
Source work progress
- 1996: H. Jerome Keisler and Joel Robbin: Mathematical Logic and Computability ... (previous) ... (next): $\S 2.1$: Introduction
- Redo from start
- Redoing Appendix $\text A$ from Next: lots of examples missed, and some fine detail ignored
- 1996: H. Jerome Keisler and Joel Robbin: Mathematical Logic and Computability ... (previous) ... (next): Appendix $\text A$: Sets and Functions: $\text{A}.2$: Boolean Operations