Book:Journal/Journal of Recreational Mathematics

From ProofWiki
Jump to navigation Jump to search

Journal of Recreational Mathematics

Publisher: Baywood Publishing Company


Dates

Started publication: $1968$ (founded by Joseph Steven Madachy)
Ended publication: $2014$

Featured Articles

  • 1970: G.J. SimmonsPalindromic powersVol. 3: pp. 93 – 98)
  • 1972: G.J. SimmonsOn palindromic squares of non-palindromic numbersVol. 5: pp. 11 – 19)
  • 1972: Elvin J. Lee and J.S. MadachyThe history and discovery of amicable numbers: part 1Vol. 5: pp. 77 – 93)
  • 1972: Elvin J. Lee and J.S. MadachyThe history and discovery of amicable numbers: part 2Vol. 5: pp. 153 – 173)
  • 1972: Elvin J. Lee and J.S. MadachyThe history and discovery of amicable numbers: part 3Vol. 5: pp. 231 – 249)
  • 1972: J.S. MadachyConsecutive-digit primes - againVol. 5: pp. 253 – 254)
  • 1973: André GoufféProducts Using All Ten Digits in the Denary SystemVol. 6, no. 1)
  • 1973: Elvin J. Lee and J.S. MadachyErrata to The History and Discovery of Amicable Numbers, I-IIIVol. 6: p. 53)
  • 1973: N.J.A. SloaneThe persistence of a numberVol. 6: pp. 97 – 98)
  • 1973: Charles W. TriggPalindromic Triangular NumbersVol. 6: pp. 146 – 147)
  • 1973: Elvin J. Lee and J.S. MadachyErrata to The History and Discovery of Amicable Numbers, I-IIIVol. 6: p. 164)
  • 1973: Elvin J. Lee and J.S. MadachyErrata to The History and Discovery of Amicable Numbers, I-IIIVol. 6: p. 229)
  • 1980 -- 1981: H.L. NelsonA Solution to Archimedes' Cattle ProblemVol. 13: pp. 162 – 176)
  • 1981 -- 82: H.L. NelsonPrime SumsVol. 14: p. 205)
  • 1983: Michel CritonProblems and Conjectures: $\text Q 1271$Vol. 16, no. 1: p. 59)
  • 1985: M.R. CalandraIntegers which are Palindromic in both Decimal and Binary NotationVol. 18, no. 1: p. 47)
  • 1985: J. MeeusMultibasic PalindromesVol. 18: pp. 168 – 173)
  • 1985: S. PilpelSome More Double Palindromic IntegersVol. 18: pp. 174 – 176)
  • 1987: C. CaldwellTruncatable primesVol. 19: pp. 30 – 33)
  • 1987: Mike KeithRepfigit NumbersVol. 19: pp. 41 – 42)
  • 1987: H. DubnerFactorial and primorial primesVol. 19: pp. 197 – 203)
  • 1988: R. OndrejkaA Palindrome (151) of Palindromic SquaresVol. 20: pp. 68 – 71)
  • 1988: H.L. NelsonA Consecutive Prime $3 \times 3$ Magic SquareVol. 20: pp. 214 – 216)
  • 1989: Andy PepperdinePythagorean QuadrilateralsVol. 21: pp. 8 – 12)
  • 1989: John M. HowellProblems and Conjectures: $\text Q 1692$. Three SquaresVol. 21: p. 68)
  • 1989: Ahmer Yasar ÖzbanProblems and Conjectures: $\text Q 1693$. Powers of $2$Vol. 21: p. 68)
  • 1990: Harvey Dubner and Harry NelsonCarmichael Numbers Which Are the Product of Three Carmichael NumbersVol. 22: p. 3)
  • 1990: Solutions to Problems and Conjectures: $\text Q 1692$. Three SquaresVol. 22: pp. 74 – 76)
  • 1990: Solutions to Problems and Conjectures: $\text Q 1693$. Powers of $2$: Research by Various ReadersVol. 22: p. 76)
  • 1990: C. AshbacherMore on palindromic squaresVol. 22: pp. 133 – 135)
  • 1990: C. AshbacherRepresenting Integers as the Sum of a Prime and Twice a SquareVol. 22: pp. 244 – 245)
  • 1990: M.T. Whalen and C.L. MillerOdd abundant numbers: some interesting observationsVol. 22: pp. 257 – 261)
  • 1993: Sol WeintraubA Prime Gap of $864$Vol. 25: pp. 42 – 43)
  • 1994: SaundersNo more powers of 2 with this property up to $2^{70000}$Vol. 26: p. 151)
  • 1994: Mike KeithAll Repfigit Numbers Less than $100$ Billion $\left({10^{11} }\right)$Vol. 26: p. 181)
  • 1994: B. HeleenFinding Repfigits--A New ApproachVol. 26: pp. 184 – 187)
  • 1994: N.M. RobinsonAll Known Replicating Fibonacci Digits Less than One Thousand Billion ($10^{12}$)Vol. 26: pp. 188 – 191)
  • 1994: K. ShirriffComputing Replicating Fibonacci DigitsVol. 26: pp. 191 – 193)
  • 1994: H.A. EscheNon-Decimal Replicating Fibonacci DigitsVol. 26: pp. 193 – 194)
  • 1994: Table: Repfigit Numbers (Base $10^*$) Less than $10^{15}$Vol. 26: p. 195)
  • 1994: Harvey DubnerPalindromic Primes with a Palindromic Prime Number of DigitsVol. 26, no. 4: p. 256)
  • 1995: David Breyer SingmasterDetermination of all pan-digital sums with two summandsVol. 27, no. 3: p. 183)
  • 1996-7: Charles R. FleenorHeronian Triangles with Consecutive Integer SidesVol. 28, no. 2: pp. 113 – 115)