Canonical P-adic Expansion of Rational is Eventually Periodic/Lemma 10

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $p$ be a prime.

Let $b \in Z_{>0}$ be a (strictly) positive integer such that $b, p$ are coprime.

Let $\sequence {d_n}$ be a sequence of $p$-adic digits.

Let $\sequence {r_n}$ be an integer sequence such that:

\(\text {(1)}: \quad\) \(\ds \forall n \in \N: \, \) \(\ds r_n\) \(=\) \(\ds d_{n + 1} b + p r_{n + 1}\)
\(\text {(2)}: \quad\) \(\ds \exists n_0 \in \N: \forall n \ge n_0: \, \) \(\ds -b\) \(\le\) \(\ds r_n \le 0\)


Let:

$n, k \in \N : k > 0 : r_n = r_{n + k}$


Then:

$d_{n + 1} = d_{n + k + 1}$
$r_{n + 1} = r_{n + k + 1}$


Proof

We have:

\(\ds d_{n + 1} b + p r_{n + 1}\) \(=\) \(\ds r_n\) by hypothesis
\(\ds \) \(=\) \(\ds r_{n + k}\) by hypothesis
\(\ds \) \(=\) \(\ds d_{n + k + 1} b + p r_{n + k + 1}\) by hypothesis
\(\ds \leadsto \ \ \) \(\ds p \paren{ r_{n + k + 1} - r_{n + 1} }\) \(=\) \(\ds \paren {d_{n + 1} - d_{n + k + 1} }b\) re-arranging terms


As $b, p$ are coprime:

$p \nmid b$

From Euclid's Lemma:

$p \divides \paren {d_{n + 1} - d_{n + k + 1} }$

By definition of $p$-adic digits:

$d_{n + 1}, d_{n + k + 1} \in \set {0, 1, \ldots, p - 1}$

Hence:

$d_{n + 1} = d_{n + k + 1}$


We have:

\(\ds p \paren{ r_{n + k + 1} - r_{n + 1} }\) \(=\) \(\ds \paren {d_{n + 1} - d_{n + k + 1} } b\)
\(\ds \) \(=\) \(\ds 0\) as $d_{n + 1} = d_{n + k + 1}$
\(\ds \leadsto \ \ \) \(\ds \paren {r_{n + k + 1} - r_{n + 1} }\) \(=\) \(\ds 0\) as $p \ne 0$
\(\ds \leadsto \ \ \) \(\ds r_{n + 1}\) \(=\) \(\ds r_{n + k + 1}\)

$\blacksquare$