# Carathéodory's Theorem (Measure Theory)/Corollary

Jump to navigation
Jump to search

## Corollary to Carathéodory's Theorem (Measure Theory)

Let $X$ be a set.

Let $\SS \subseteq \powerset X$ be a semi-ring of subsets of $X$.

Let $\mu: \SS \to \overline \R$ be a pre-measure on $\SS$.

Let $\map \sigma \SS$ be the $\sigma$-algebra generated by $\SS$.

Suppose there exists an exhausting sequence $\sequence {S_n}_{n \mathop \in \N} \uparrow X$ in $\SS$ such that:

- $\forall n \in \N: \map \mu {S_n} < +\infty$

Then the extension $\mu^*$ is unique.

## Proof

This theorem requires a proof.You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by crafting such a proof.To discuss this page in more detail, feel free to use the talk page.When this work has been completed, you may remove this instance of `{{ProofWanted}}` from the code.If you would welcome a second opinion as to whether your work is correct, add a call to `{{Proofread}}` the page. |

## Source of Name

This entry was named for Constantin Carathéodory.

## Sources

This page may be the result of a refactoring operation.As such, the following source works, along with any process flow, will need to be reviewed. When this has been completed, the citation of that source work (if it is appropriate that it stay on this page) is to be placed above this message, into the usual chronological ordering.If you have access to any of these works, then you are invited to review this list, and make any necessary corrections.To discuss this page in more detail, feel free to use the talk page.When this work has been completed, you may remove this instance of `{{SourceReview}}` from the code. |

- 2005: René L. Schilling:
*Measures, Integrals and Martingales*... (previous) ... (next): $6.1$