Category:Autocovariance Matrices

From ProofWiki
Jump to navigation Jump to search

This category contains results about Autocovariance Matrices.


Let $S$ be a strictly stationary stochastic process giving rise to a time series $T$.

Let $\sequence {s_n}$ be a sequence of $n$ successive values of $T$:

$\sequence {s_n} = \tuple {z_1, z_2, \dotsb, z_n}$


The autocovariance matrix associated with $S$ for $\sequence {s_n}$ is:

$\boldsymbol \Gamma_n = \begin {pmatrix} \gamma_0 & \gamma_1 & \gamma_2 & \cdots & \gamma_{n - 1} \\ \gamma_1 & \gamma_0 & \gamma_1 & \cdots & \gamma_{n - 2} \\ \gamma_2 & \gamma_1 & \gamma_0 & \cdots & \gamma_{n - 3} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \gamma_{n - 1} & \gamma_{n - 2} & \gamma_{n - 3} & \cdots & \gamma_0 \end {pmatrix}$

where $\gamma_k$ is the autocovariance of $S$ at lag $k$.


That is, such that:

$\sqbrk {\Gamma_n}_{i j} = \gamma_{\size {i - j} }$

Pages in category "Autocovariance Matrices"

The following 2 pages are in this category, out of 2 total.