Category:Axioms/Matroid Axioms
Jump to navigation
Jump to search
This category contains axioms related to Matroid Axioms.
Let $S$ be a finite set.
Let $\mathscr I$ be a set of subsets of $S$.
The matroid axioms are the conditions on $S$ and $\mathscr I$ in order for the ordered pair $\struct {S, \mathscr I}$ to be a matroid:
Axioms 1
\((\text I 1)\) | $:$ | \(\ds \O \in \mathscr I \) | |||||||
\((\text I 2)\) | $:$ | \(\ds \forall X \in \mathscr I: \forall Y \subseteq S:\) | \(\ds Y \subseteq X \implies Y \in \mathscr I \) | ||||||
\((\text I 3)\) | $:$ | \(\ds \forall U, V \in \mathscr I:\) | \(\ds \size V < \size U \implies \exists x \in U \setminus V : V \cup \set x \in \mathscr I \) |
Axioms 2
\((\text I 1)\) | $:$ | \(\ds \O \in \mathscr I \) | |||||||
\((\text I 2)\) | $:$ | \(\ds \forall X \in \mathscr I: \forall Y \subseteq S:\) | \(\ds Y \subseteq X \implies Y \in \mathscr I \) | ||||||
\((\text I 3')\) | $:$ | \(\ds \forall U, V \in \mathscr I:\) | \(\ds \size U = \size V + 1 \implies \exists x \in U \setminus V : V \cup \set x \in \mathscr I \) |
Axioms 3
\((\text I 1)\) | $:$ | \(\ds \O \in \mathscr I \) | |||||||
\((\text I 2)\) | $:$ | \(\ds \forall X \in \mathscr I: \forall Y \subseteq S:\) | \(\ds Y \subseteq X \implies Y \in \mathscr I \) | ||||||
\((\text I 3'')\) | $:$ | \(\ds \forall U, V \in \mathscr I:\) | \(\ds \size V < \size U \implies \exists Z \subseteq U \setminus V : \paren{V \cup Z \in \mathscr I} \land \paren{\size{V \cup Z} = \size U} \) |
Axioms 4
\((\text I 1)\) | $:$ | \(\ds \O \in \mathscr I \) | |||||||
\((\text I 2)\) | $:$ | \(\ds \forall X \in \mathscr I: \forall Y \subseteq S:\) | \(\ds Y \subseteq X \implies Y \in \mathscr I \) | ||||||
\((\text I 3''')\) | $:$ | \(\ds \forall A \subseteq S:\) | \(\ds \text{ all maximal subsets } Y \subseteq A \text{ with } Y \in \mathscr I \text{ have the same cardinality} \) |
Pages in category "Axioms/Matroid Axioms"
The following 5 pages are in this category, out of 5 total.