Category:Backward Difference Operator
Jump to navigation
Jump to search
This category contains results about Backward Difference Operator.
Definitions specific to this category can be found in Definitions/Backward Difference Operator.
First Backward Difference Operator
The first backward difference operator on $f$ is defined as:
- $\nabla \map f {x_r} := \map f {x_r} - \map f {x_{r - 1} }$
for $r = 1, 2, \ldots, n$
Second Backward Difference Operator
The second backward difference operator on $f$ is defined as:
\(\ds \map {\nabla^2 f} {x_r}\) | \(=\) | \(\ds \map \nabla {\map {\nabla f} {x_r} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \nabla \map f {x_r} - \Delta \map f {x_{r - 1} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \map f {x_r} - 2 \Delta \map f {x_{r - 1} } + \Delta \map f {x_{r - 2} }\) |
for $r = 2, 3, \ldots, n$
$k$th Backward Difference Operator
The $k$th backward difference operator on $f$ is defined as:
\(\ds \map {\nabla^k f} {x_i}\) | \(=\) | \(\ds \map \nabla {\map {\nabla^{k - 1} f} {x_i} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \nabla^{k - 1} \map f {x_i} - \nabla^{k - 1} \map f {x_{i - 1} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{s \mathop = 0}^k \paren {-1}^{k - s} \dbinom k s y_{i - s}\) |
for $i = k, k + 1, k + 2, \ldots, n$
Pages in category "Backward Difference Operator"
This category contains only the following page.