Category:Change of Basis
Jump to navigation
Jump to search
This category contains results about Change of Basis.
Let $I_G$ be the identity linear operator on $G$.
Let $\left[{I_G; \left \langle {a_n} \right \rangle, \left \langle {b_n} \right \rangle}\right]$ be the matrix of $I_G$ relative to $\left \langle {b_n} \right \rangle$ and $\left \langle {a_n} \right \rangle$.
Then $\left[{I_G; \left \langle {a_n} \right \rangle, \left \langle {b_n} \right \rangle}\right]$ is called the matrix corresponding to the change of basis from $\left \langle {a_n} \right \rangle$ to $\left \langle {b_n} \right \rangle$.
Pages in category "Change of Basis"
The following 8 pages are in this category, out of 8 total.