Category:Continuous Uniform Distribution

From ProofWiki
Jump to: navigation, search

This category contains results about the continuous uniform distribution.


Let $X$ be a continuous random variable on a probability space $\struct {\Omega, \Sigma, \Pr}$.

Let $a, b \in \R$, $a < b$.


$X$ is said to be uniformly distributed on the closed real interval $\closedint a b$ if and only if it has probability density function:

$\map {f_X} x = \begin{cases} \dfrac 1 {b - a} & a \le x \le b \\ 0 & \text{otherwise} \end{cases}$


This is written:

$X \sim \ContinuousUniform a b$