# Category:Continuous Uniform Distribution

Jump to navigation
Jump to search

This category contains results about the continuous uniform distribution.

Let $X$ be a continuous random variable on a probability space $\struct {\Omega, \Sigma, \Pr}$.

Let $a, b \in \R$ such that $a < b$.

$X$ is said to be **uniformly distributed** on the closed real interval $\closedint a b$ if and only if it has probability density function:

- $\map {f_X} x = \begin{cases} \dfrac 1 {b - a} & a \le x \le b \\ 0 & \text{otherwise} \end{cases}$

This is written:

- $X \sim \ContinuousUniform a b$

## Pages in category "Continuous Uniform Distribution"

The following 10 pages are in this category, out of 10 total.