Category:Convergent Complex Series

From ProofWiki
Jump to navigation Jump to search

This category contains results about Convergent Complex Series.


Let $S$ be one of the standard number fields $\Q, \R, \C$.

Let $\displaystyle \sum_{n \mathop = 1}^\infty a_n$ be a series in $S$.

Let $\sequence {s_N}$ be the sequence of partial sums of $\displaystyle \sum_{n \mathop = 1}^\infty a_n$.

It follows that $\sequence {s_N}$ can be treated as a sequence in the metric space $S$.


If $s_N \to s$ as $N \to \infty$, the series converges to the sum $s$, and one writes $\displaystyle \sum_{n \mathop = 1}^\infty a_n = s$.

A series is said to be convergent if and only if it converges to some $s$.

Subcategories

This category has only the following subcategory.

R