Category:Convergent Sequences (Normed Vector Spaces)

From ProofWiki
Jump to navigation Jump to search

This category contains results about Convergent Sequences in the context of Normed Vector Spaces.
Definitions specific to this category can be found in Definitions/Convergent Sequences (Normed Vector Spaces).

Let $\struct {X, \norm {\,\cdot \,} }$ be a normed vector space.

Let $\sequence {x_n}_{n \mathop \in \N}$ be a sequence in $X$.

Let $L \in X$.

The sequence $\sequence {x_n}_{n \mathop \in \N}$ converges to the limit $L \in X$ if and only if:

$\forall \epsilon \in \R_{>0}: \exists N \in \R_{>0}: \forall n \in \N: n > N \implies \norm {x_n - L} < \epsilon$