Category:Definitions/Euclidean Norms
Jump to navigation
Jump to search
This category contains definitions related to Euclidean Norms.
Related results can be found in Category:Euclidean Norms.
Let $\mathbf v = \tuple {v_1, v_2, \ldots, v_n}$ be a vector in the real Euclidean $n$-space $\R^n$.
The Euclidean norm of $\mathbf v$ is defined as:
\(\ds \norm {\mathbf v}\) | \(:=\) | \(\ds \sqrt {\mathbf v \cdot \mathbf v}\) | where $\mathbf v \cdot \mathbf v$ denotes the dot product | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\sum_{k \mathop = 1}^n {v_k}^2}^{1/2}\) |
Pages in category "Definitions/Euclidean Norms"
This category contains only the following page.