Category:Definitions/Filter Bases

From ProofWiki
Jump to navigation Jump to search

This category contains definitions related to Filter Bases.
Related results can be found in Category:Filter Bases.

Let $S$ be a set.

Let $\powerset S$ denote the power set of $S$.

Definition 1

Let $\BB \subset \powerset S$ such that $\O \notin \BB$ and $\BB \ne \O$.

Then $\FF := \set {V \subseteq S: \exists U \in \BB: U \subseteq V}$ is a filter on $S$ if and only if:

$\forall V_1, V_2 \in \BB: \exists U \in \BB: U \subseteq V_1 \cap V_2$

Such a $\BB$ is called a filter basis of $\FF$.

Definition 2

Let $\BB$ be a subset of a filter $\FF$ on $S$ such that $\BB \ne \O$.

Then $\BB$ is a filter basis of $\FF$ if and only if:

$\forall U \in \FF: \exists V \in \BB: V \subseteq U$