Category:Definitions/Independent Random Variables
Jump to navigation
Jump to search
This category contains definitions related to Independent Random Variables.
Related results can be found in Category:Independent Random Variables.
Let $\struct {\Omega, \Sigma, \Pr}$ be a probability space.
Let $\struct {S, \Sigma'}$ be a measurable space.
Let $\sequence {X_n}_{n \mathop \in \N}$ be a sequence of random variables on $\struct {\Omega, \Sigma, \Pr}$ taking values in $\struct {S, \Sigma'}$.
For each $i \in \N$, let $\map \sigma {X_i}$ be the $\sigma$-algebra generated by $X_i$.
We say that $\sequence {X_n}_{n \mathop \in \N}$ is a sequence of independent random variable if and only if:
- $\sequence {\map \sigma {X_n} }_{n \mathop \in \N}$ is a sequence of independent $\sigma$-algebras.
Pages in category "Definitions/Independent Random Variables"
The following 10 pages are in this category, out of 10 total.
I
- Definition:Independent Discrete Random Variables
- Definition:Independent Random Variables
- Definition:Independent Random Variables/Dependent
- Definition:Independent Random Variables/Discrete
- Definition:Independent Random Variables/Discrete/General Definition
- Definition:Independent Random Variables/Discrete/General Definition/Definition 1
- Definition:Independent Random Variables/Discrete/General Definition/Definition 2
- Definition:Independent Random Variables/Discrete/Pairwise Independent
- Definition:Independent Random Variables/General Definition