Category:Definitions/One-Parameter Families
This category contains definitions related to One-Parameter Families.
Related results can be found in Category:One-Parameter Families.
One-Parameter Family of Curves
Consider the implicit function $\map f {x, y, c} = 0$ in the cartesian $\tuple {x, y}$-plane where $c$ is a constant.
For each value of $c$, we have that $\map f {x, y, z, c} = 0$ defines a relation between $x$ and $y$ which can be graphed in the cartesian plane.
Thus, each value of $c$ defines a particular curve.
The complete set of all these curve for each value of $c$ is called a one-parameter family of curves.
One-Parameter Family of Surfaces
Consider the implicit function $\map f {x, y, z, c} = 0$ in the Cartesian $3$-space where $c$ is a constant.
For each value of $c$, we have that $\map f {x, y, z, c} = 0$ defines a relation between $x$, $y$ and $z$ which can be graphed in cartesian $3$-space.
Thus, each value of $c$ defines a particular surface.
The complete set of all these surfaces for each value of $c$ is called a one-parameter family of surfaces.
Subcategories
This category has the following 2 subcategories, out of 2 total.
Pages in category "Definitions/One-Parameter Families"
The following 8 pages are in this category, out of 8 total.