Category:Definitions/Poisson Distribution
Jump to navigation
Jump to search
This category contains definitions related to the Poisson distribution.
Related results can be found in Category:Poisson Distribution.
Let $X$ be a discrete random variable on a probability space $\struct {\Omega, \Sigma, \Pr}$.
Then $X$ has the Poisson distribution with parameter $\lambda$ (where $\lambda > 0$) if and only if:
- $\Img X = \set {0, 1, 2, \ldots} = \N$
- $\map \Pr {X = k} = \dfrac 1 {k!} \lambda^k e^{-\lambda}$
It is written:
- $X \sim \Poisson \lambda$
Pages in category "Definitions/Poisson Distribution"
The following 2 pages are in this category, out of 2 total.