Category:Examples of Euler Phi Function
Jump to navigation
Jump to search
This category contains examples of Euler Phi Function.
Let $n \in \Z_{>0}$, that is, a strictly positive integer.
The Euler $\phi$ (phi) function is the arithmetic function $\phi: \Z_{>0} \to \Z_{>0}$ defined as:
- $\map \phi n = $ the number of strictly positive integers less than or equal to $n$ which are prime to $n$
That is:
- $\map \phi n = \card {S_n}: S_n = \set {k: 1 \le k \le n, k \perp n}$
Subcategories
This category has only the following subcategory.
E
Pages in category "Examples of Euler Phi Function"
The following 18 pages are in this category, out of 18 total.
E
- Euler Phi Function of 1
- Euler Phi Function of 10
- Euler Phi Function of 104
- Euler Phi Function of 2
- Euler Phi Function of 2025
- Euler Phi Function of 24
- Euler Phi Function of 26
- Euler Phi Function of 3
- Euler Phi Function of 4
- Euler Phi Function of 5
- Euler Phi Function of 6
- Euler Phi Function of 9
- Euler Phi Function/Examples
- Euler Phi Function/Examples/1,000,000
- Euler Phi Function/Examples/16
- Euler Phi Function/Examples/20
- Euler Phi Function/Examples/24
- Euler Phi Function/Examples/9