Category:Examples of Forward Difference Operator
Jump to navigation
Jump to search
This category contains examples of Forward Difference Operator.
First Forward Difference Operator
The first forward difference operator on $f$ is defined as:
- $\Delta \map f {x_i} := \map f {x_{i + 1} } - \map f {x_i}$
for $i = 0, 1, 2, \ldots, n - 1$
Second Forward Difference Operator
The second forward difference operator on $f$ is defined as:
\(\ds \map {\Delta^2 f} {x_i}\) | \(=\) | \(\ds \map \Delta {\map {\Delta f} {x_i} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \Delta \map f {x_{i + 1} } - \Delta \map f {x_i}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \map f {x_{i + 2} } - 2 \Delta \map f {x_{i + 1} } + \Delta \map f {x_i}\) |
for $i = 0, 1, 2, \ldots, n - 2$
$k$th Forward Difference Operator
The $k$th forward difference operator on $f$ is defined as:
\(\ds \map {\Delta^k f} {x_i}\) | \(=\) | \(\ds \map \Delta {\map {\Delta^{k - 1} f} {x_i} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \Delta^{k - 1} \map f {x_{i + 1} } - \Delta^{k - 1} \map f {x_i}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{s \mathop = 0}^k \paren {-1}^{k - s} \dbinom k s y_{i + s}\) |
for $i = 0, 1, 2, \ldots, n - k$
Pages in category "Examples of Forward Difference Operator"
The following 4 pages are in this category, out of 4 total.