Category:Examples of Infinity
This category contains examples of Infinity.
Informally, the term infinity is used to mean some infinite number, but this concept falls very far short of a usable definition.
The symbol $\infty$ (supposedly invented by John Wallis) is often used in this context to mean an infinite number.
However, outside of its formal use in the definition of limits its use is strongly discouraged until you know what you're talking about.
It is defined as having the following properties:
\(\ds \forall n \in \Z: \, \) | \(\ds n\) | \(<\) | \(\ds \infty\) | |||||||||||
\(\ds \forall n \in \Z: \, \) | \(\ds n + \infty\) | \(=\) | \(\ds \infty\) | |||||||||||
\(\ds \forall n \in \Z: \, \) | \(\ds n \times \infty\) | \(=\) | \(\ds \infty\) | |||||||||||
\(\ds \infty^2\) | \(=\) | \(\ds \infty\) |
Similarly, the quantity written as $-\infty$ is defined as having the following properties:
\(\ds \forall n \in \Z: \, \) | \(\ds -\infty\) | \(<\) | \(\ds n\) | |||||||||||
\(\ds \forall n \in \Z: \, \) | \(\ds -\infty + n\) | \(=\) | \(\ds -\infty\) | |||||||||||
\(\ds \forall n \in \Z: \, \) | \(\ds -\infty \times n\) | \(=\) | \(\ds -\infty\) | |||||||||||
\(\ds \paren {-\infty}^2\) | \(=\) | \(\ds -\infty\) |
The latter result seems wrong when you think of the rule that a negative number squared equals a positive number, but remember that infinity is not exactly a number as such.
Pages in category "Examples of Infinity"
The following 2 pages are in this category, out of 2 total.