Category:Group Action of Symmetric Group on Complex Vector Space

From ProofWiki
Jump to navigation Jump to search

This category contains pages concerning Group Action of Symmetric Group on Complex Vector Space:


Let $n \in \Z_{>0}$ be a (strictly) positive integer.

Let $S_n$ denote the symmetric group on $n$ letters.

Let $V$ denote a vector space over the complex numbers $\C$.

Let $V$ have a basis:

$\BB := \set {v_1, v_2, \ldots, v_n}$


Let $*: S_n \times V \to V$ be a group action of $S_n$ on $V$ defined as:

$\forall \tuple {\rho, v} \in S_n \times V: \rho * v := \lambda_1 v_{\map \rho 1} + \lambda_2 v_{\map \rho 2} + \dotsb + \lambda_n v_{\map \rho n}$

where:

$v = \lambda_1 v_1 + \lambda_2 v_2 + \dotsb + \lambda_n v_n$


Then $*$ is a group action.