Category:Group Action of Symmetric Group on Complex Vector Space
Jump to navigation
Jump to search
This category contains pages concerning Group Action of Symmetric Group on Complex Vector Space:
Let $n \in \Z_{>0}$ be a (strictly) positive integer.
Let $S_n$ denote the symmetric group on $n$ letters.
Let $V$ denote a vector space over the complex numbers $\C$.
Let $V$ have a basis:
- $\BB := \set {v_1, v_2, \ldots, v_n}$
Let $*: S_n \times V \to V$ be a group action of $S_n$ on $V$ defined as:
- $\forall \tuple {\rho, v} \in S_n \times V: \rho * v := \lambda_1 v_{\map \rho 1} + \lambda_2 v_{\map \rho 2} + \dotsb + \lambda_n v_{\map \rho n}$
where:
- $v = \lambda_1 v_1 + \lambda_2 v_2 + \dotsb + \lambda_n v_n$
Then $*$ is a group action.
Pages in category "Group Action of Symmetric Group on Complex Vector Space"
The following 9 pages are in this category, out of 9 total.
G
- Group Action of Symmetric Group on Complex Vector Space
- Group Action of Symmetric Group on Complex Vector Space/Orbit
- Group Action of Symmetric Group on Complex Vector Space/Orbit/Examples
- Group Action of Symmetric Group on Complex Vector Space/Orbit/Examples/Example 1
- Group Action of Symmetric Group on Complex Vector Space/Orbit/Examples/Example 2
- Group Action of Symmetric Group on Complex Vector Space/Stabilizer
- Group Action of Symmetric Group on Complex Vector Space/Stabilizer/Examples
- Group Action of Symmetric Group on Complex Vector Space/Stabilizer/Examples/Example 1
- Group Action of Symmetric Group on Complex Vector Space/Stabilizer/Examples/Example 2