Category:Hahn-Banach Separation Theorem
This category contains pages concerning Hahn-Banach Separation Theorem:
Real Case
Let $\struct {X, \norm \cdot}$ be a normed vector space over $\R$.
Let $\struct {X^\ast, \norm \cdot_{X^\ast} }$ be the normed dual space of $\struct {X, \norm \cdot}$.
Open Convex Set and Convex Set
Let $A \subseteq X$ be an open convex set.
Let $B \subseteq X$ be a convex set disjoint from $A$.
Then there exists $f \in X^\ast$ and $c \in \R$ such that:
- $A \subseteq \set {x \in X : \map f x < c}$
and:
- $B \subseteq \set {x \in X : \map f x \ge c}$
That is:
- there exists $f \in X^\ast$ and $c \in \R$ such that $\map f a < c \le \map f b$ for each $a \in A$ and $b \in B$.
Compact Convex Set and Closed Convex Set
Let $A$ be a compact convex set.
Let $B$ be a closed convex set disjoint from $A$.
Then there exists $f \in X^\ast$, $c \in \R$ and $\epsilon > 0$ such that:
- $A \subseteq \set {x \in X : \map f x \le c - \epsilon}$
and:
- $B \subseteq \set {x \in X : \map f x \ge c + \epsilon}$
That is:
- there exists $f \in X^\ast$, $c \in \R$ and $\epsilon > 0$ such that $\map f a \le c - \epsilon < c + \epsilon \le \map f b$ for $a \in A$ and $b \in B$.
Complex Case
Let $\struct {X, \norm \cdot}$ be a normed vector space over $\C$.
Let $\struct {X^\ast, \norm \cdot_{X^\ast} }$ be the normed dual space of $\struct {X, \norm \cdot}$.
Open Convex Set and Convex Set
Let $A \subseteq X$ be an open convex set.
Let $B \subseteq X$ be a convex set disjoint from $A$.
Then there exists $f \in X^\ast$ and $c \in \R$ such that:
- $A \subseteq \set {x \in X : \map \Re {\map f x} < c}$
and:
- $B \subseteq \set {x \in X : \map \Re {\map f x} \ge c}$
That is:
- there exists $f \in X^\ast$ and $c \in \R$ such that $\map \Re {\map f a} < c \le \map \Re {\map f b}$ for each $a \in A$ and $b \in B$.
Compact Convex Set and Closed Convex Set
Let $A$ be a compact convex set.
Let $B$ be a closed convex set disjoint from $A$.
Then there exists $f \in X^\ast$, $c \in \R$ and $\epsilon > 0$ such that:
- $A \subseteq \set {x \in X : \map \Re {\map f x} \le c - \epsilon}$
and:
- $B \subseteq \set {x \in X : \map \Re {\map f x} \ge c + \epsilon}$
That is:
- there exists $f \in X^\ast$, $c \in \R$ and $\epsilon > 0$ such that $\map \Re {\map f a} \le c - \epsilon < c + \epsilon \le \map \Re {\map f b}$ for $a \in A$ and $b \in B$.
Pages in category "Hahn-Banach Separation Theorem"
The following 8 pages are in this category, out of 8 total.
H
- Hahn-Banach Separation Theorem
- Hahn-Banach Separation Theorem/Complex Case
- Hahn-Banach Separation Theorem/Complex Case/Compact Convex Set and Closed Convex Set
- Hahn-Banach Separation Theorem/Complex Case/Open Convex Set and Convex Set
- Hahn-Banach Separation Theorem/Real Case
- Hahn-Banach Separation Theorem/Real Case/Compact Convex Set and Closed Convex Set
- Hahn-Banach Separation Theorem/Real Case/Open Convex Set and Convex Set
- Hahn-Banach Separation Theorem/Real Case/Open Convex Set and Convex Set/Lemma