Category:Möbius Function
Jump to navigation
Jump to search
This category contains results about the Möbius function.
Definitions specific to this category can be found in Definitions/Möbius Function.
Let $n \in \Z_{>0}$, that is, a strictly positive integer.
The Möbius function is the function $\mu: \Z_{>0} \to \Z_{>0}$ defined as:
- $\map \mu n = \begin{cases} 1 & : n = 1 \\ 0 & : \exists p \in \mathbb P: p^2 \divides n\\ \paren {-1}^k & : n = p_1 p_2 \ldots p_k: p_i \in \mathbb P \end{cases}$
Subcategories
This category has the following 2 subcategories, out of 2 total.
E
- Examples of Möbius Function (5 P)
S
Pages in category "Möbius Function"
The following 8 pages are in this category, out of 8 total.