Category:Piecewise Continuous Functions

From ProofWiki
Jump to navigation Jump to search

This category contains results about Piecewise Continuous Functions.
Definitions specific to this category can be found in Definitions/Piecewise Continuous Functions.


Let $f$ be a real function defined on a closed interval $\left[{a \,.\,.\, b}\right]$.


$f$ is piecewise continuous if and only if:

there exists a finite subdivision $\left\{ {x_0, x_1, \ldots, x_n}\right\}$ of $\left[{a \,.\,.\, b}\right]$, where $x_0 = a$ and $x_n = b$, such that:
for all $i \in \left\{ {1, 2, \ldots, n}\right\}$, $f$ is continuous on $\left({x_{i − 1} \,.\,.\, x_i}\right)$.