Category:Properties of Limit at Minus Infinity of Real Function

From ProofWiki
Jump to navigation Jump to search

This category contains pages concerning Properties of Limit at Minus Infinity of Real Function:


Relation with Limit at $+\infty$

Let $a \in \R$.

Let $f : \hointl {-\infty} a \to \R$ be a real function.


Then:

$\ds \lim_{x \mathop \to -\infty} \map f x$ exists if and only if $\ds \lim_{x \mathop \to \infty} \map f {-x}$ exists

and in this case:

$\ds \lim_{x \mathop \to -\infty} \map f x = \lim_{x \mathop \to \infty} \map f {-x}$

where:

$\ds \lim_{x \mathop \to \infty}$ denotes the limit at $+\infty$
$\ds \lim_{x \mathop \to -\infty}$ denotes the limit at $-\infty$.


Sum Rule

Let $a \in \R$.

Let $f, g : \hointl {-\infty} a \to \R$ be real functions such that:

$\ds \lim_{x \mathop \to -\infty} \map f x$ and $\ds \lim_{x \mathop \to -\infty} \map g x$ exist

where $\ds \lim_{x \mathop \to -\infty}$ denotes the limit at $-\infty$.


Then:

$\ds \lim_{x \mathop \to -\infty} \paren {\map f x + \map g x}$ exists

with:

$\ds \lim_{x \mathop \to -\infty} \paren {\map f x + \map g x} = \lim_{x \mathop \to \infty} \map f x + \lim_{x \mathop \to \infty} \map g x$


Multiple Rule

Let $a, \alpha \in \R$.

Let $f : \hointl {-\infty} a \to \R$ be a real function such that:

$\ds \lim_{x \mathop \to -\infty} \map f x$ exists

where $\ds \lim_{x \mathop \to -\infty}$ denotes the limit at $-\infty$.


Then:

$\ds \lim_{x \mathop \to -\infty} \paren {\alpha \map f x}$ exists

with:

$\ds \lim_{x \mathop \to -\infty} \paren {\alpha \map f x} = \alpha \lim_{x \mathop \to -\infty} \map f x$


Combined Sum Rule

Let $a, \alpha, \beta \in \R$.

Let $f, g : \hointl {-\infty} a \to \R$ be real functions such that:

$\ds \lim_{x \mathop \to -\infty} \map f x$ and $\ds \lim_{x \mathop \to -\infty} \map g x$ exist

where $\ds \lim_{x \mathop \to -\infty}$ denotes the limit at $-\infty$.


Then:

$\ds \lim_{x \mathop \to -\infty} \paren {\alpha \map f x + \beta \map g x}$ exists

with:

$\ds \lim_{x \mathop \to -\infty} \paren {\alpha \map f x + \beta \map g x} = \alpha \lim_{x \mathop \to \infty} \map f x + \beta \lim_{x \mathop \to \infty} \map g x$


Difference Rule

Let $a, \alpha, \beta \in \R$.

Let $f, g : \hointl {-\infty} a \to \R$ be real functions such that:

$\ds \lim_{x \mathop \to -\infty} \map f x$ and $\ds \lim_{x \mathop \to -\infty} \map g x$ exist

where $\ds \lim_{x \mathop \to -\infty}$ denotes the limit at $-\infty$.


Then:

$\ds \lim_{x \mathop \to -\infty} \paren {\map f x - \map g x}$ exists

with:

$\ds \lim_{x \mathop \to -\infty} \paren {\map f x - \map g x} = \lim_{x \mathop \to \infty} \map f x - \lim_{x \mathop \to \infty} \map g x$


Product Rule

Let $a \in \R$.

Let $f, g : \hointl {-\infty} a \to \R$ be real functions such that:

$\ds \lim_{x \mathop \to -\infty} \map f x$ and $\ds \lim_{x \mathop \to -\infty} \map g x$ exist

where $\ds \lim_{x \mathop \to -\infty}$ denotes the limit at $-\infty$.


Then:

$\ds \lim_{x \mathop \to -\infty} \paren {\map f x \map g x}$ exists

with:

$\ds \lim_{x \mathop \to -\infty} \paren {\map f x \map g x} = \paren {\lim_{x \mathop \to \infty} \map f x} \paren {\lim_{x \mathop \to \infty} \map g x}$