Category:Riemann P-symbol
Jump to navigation
Jump to search
This category contains results about Riemann P-symbol.
The Riemann P-symbol, written:
- $\map f z = \operatorname P \set {\begin {matrix} a & b & c \\ \alpha & \beta & \gamma & z \\ \alpha' & \beta' & \gamma' \end {matrix} }$
denotes the solutions to the hypergeometric differential equation:
\(\ds \) | \(\) | \(\ds \frac {\d^2 f} {\d z^2}\) | ||||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \paren {\frac {1 - \alpha - \alpha'} {z - a} + \frac {1 - \beta - \beta'} {z - b} + \frac {1 - \gamma - \gamma'} {z - c} } \frac {\d f} {\d z}\) | |||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \paren {\frac {\alpha \alpha' \paren {a - b} \paren {a - c} } {z - a} + \frac {\beta \beta' \paren {b - c} \paren {b - a} } {z - b} + \frac {\gamma \gamma' \paren {c - a} \paren {c - b} } {z - c} } \frac f {\paren {z - a} \paren {z - b} \paren {z - c} }\) | |||||||||||
\(\ds \) | \(=\) | \(\ds 0\) |
where:
- $\alpha + \alpha' + \beta + \beta' + \gamma + \gamma' = 1$
Pages in category "Riemann P-symbol"
This category contains only the following page.