Category:Standard Instances of Categorical Syllogisms
Jump to navigation
Jump to search
This category contains results about Standard Instances of Categorical Syllogisms.
Definitions specific to this category can be found in Definitions/Standard Instances of Categorical Syllogisms.
For each categorical syllogism, there are four figures:
- $\begin{array}{r|rl} \text I & & \\ \hline \\ \text{Major Premise}: & \mathbf \Phi_1 & \tuple {M, P} \\ \text{Minor Premise}: & \mathbf \Phi_2 & \tuple {S, M} \\ \hline \\ \text{Conclusion}: & \mathbf \Phi_3 & \tuple {S, P} \\ \end{array} \qquad \begin{array}{r|rl} \text {II} & & \\ \hline \\ \text{Major Premise}: & \mathbf \Phi_1 & \tuple {P, M} \\ \text{Minor Premise}: & \mathbf \Phi_2 & \tuple {S, M} \\ \hline \\ \text{Conclusion}: & \mathbf \Phi_3 & \tuple {S, P} \\ \end{array}$
- $\begin{array}{r|rl} \text {III} & & \\ \hline \\ \text{Major Premise}: & \mathbf \Phi_1 & \tuple {M, P} \\ \text{Minor Premise}: & \mathbf \Phi_2 & \tuple {M, S} \\ \hline \\ \text{Conclusion}: & \mathbf \Phi_3 & \tuple {S, P} \\ \end{array} \qquad \begin{array}{r|rl} \text {IV} & & \\ \hline \\ \text{Major Premise}: & \mathbf \Phi_1 & \tuple {P, M} \\ \text{Minor Premise}: & \mathbf \Phi_2 & \tuple {M, S} \\ \hline \\ \text{Conclusion}: & \mathbf \Phi_3 & \tuple {S, P} \\ \end{array}$
where $\mathbf \Phi_1$, $\mathbf \Phi_2$ and $\mathbf \Phi_3$ each denote one of the categorical statements $\mathbf A$, $\mathbf E$, $\mathbf I$ or $\mathbf O$.
A standard instance of a categorical syllogism is obtained by substituting $\mathbf A$, $\mathbf E$, $\mathbf I$ or $\mathbf O$ for each of $\mathbf \Phi_1$, $\mathbf \Phi_2$ and $\mathbf \Phi_3$ in one of the above figures.
This category currently contains no pages or media.