# Category:Transitive Group Actions

Jump to navigation
Jump to search

This category contains results about Transitive Group Actions.

Let $G$ be a group.

Let $S$ be a set.

Let $*: G \times S \to S$ be a group action.

The group action is **transitive** if and only if for any $x, y \in S$ there exists $g \in G$ such that $g * x = y$.

That is, if and only if for all $x \in S$:

- $\Orb x = S$

where $\Orb x$ denotes the orbit of $x \in S$ under $*$.

## Pages in category "Transitive Group Actions"

The following 7 pages are in this category, out of 7 total.