Category:Universal Property of Abelianization of Group
Jump to navigation
Jump to search
This category contains pages concerning Universal Property of Abelianization of Group:
Let $G$ be a group.
Let $G^{\operatorname {ab} }$ be its abelianization.
Let $\pi : G \to G^{\operatorname {ab} }$ be the quotient group epimorphism.
Let $H$ be an abelian group.
Let $f: G \to H$ be a group homomorphism.
Then there exists a unique group homomorphism $g : G^{\operatorname {ab}} \to H$ such that $g \circ \pi = f$:
- $\xymatrix { G \ar[d]_\pi \ar[r]^{\forall f} & H\\ G^{\operatorname {ab} } \ar[ru]_{\exists ! g} }$
Pages in category "Universal Property of Abelianization of Group"
The following 3 pages are in this category, out of 3 total.