Ceiling of Non-Integer
Jump to navigation
Jump to search
Theorem
Let $x \in \R$ be a real number.
Let $x \notin \Z$.
Then:
- $\left \lceil{x}\right \rceil > x$
where $\left \lceil{x}\right \rceil$ denotes the ceiling of $x$.
Proof
From Ceiling is between Number and One More:
- $\left \lceil{x}\right \rceil \ge x$
From Real Number is Integer iff equals Ceiling:
- $x = \left \lceil {x} \right \rceil \iff x \in \Z$
But we have $x \notin \Z$.
So:
- $\left \lceil {x} \right \rceil \ne x$
and so:
- $\left \lceil {x} \right \rceil > x$
$\blacksquare$