Cesàro Summation Operator is Continuous Linear Transformation
Jump to navigation
Jump to search
Theorem
Let $\ell^\infty$ be the space of bounded sequences.
Let $A : \ell^\infty \to \ell^\infty$ be the Cesàro summation operator.
Then $A$ is a continuous linear transformation.
Proof
Well-Definedness
Let $\mathbf x = \sequence {x_n}_{n \mathop \in \N} \in \ell^\infty$.
Then:
\(\ds \forall n \in \N: \, \) | \(\ds \size {x_n}\) | \(\le\) | \(\ds \sup_{n \mathop \in \N} \size {x_n}\) | |||||||||||
\(\ds \) | \(=\) | \(\ds \norm {\mathbf x}_\infty\) | Definition of Supremum Norm |
Thus:
\(\ds \size {\sum_{i \mathop = 1}^n\frac{x_i} n }\) | \(\le\) | \(\ds \frac 1 n \sum_{i \mathop = 1}^n \size {x_i}\) | General Triangle Inequality for Complex Numbers | |||||||||||
\(\ds \) | \(\le\) | \(\ds \frac 1 n \sum_{i \mathop = 1}^n \sup_{n \mathop \in \N} \size {x_i}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 n n \norm {\mathbf x}_\infty\) | Definition of Supremum Norm | |||||||||||
\(\ds \) | \(=\) | \(\ds \norm {\mathbf x}_\infty\) |
Hence:
- $A \mathbf x \in \ell^\infty$
![]() | Further research is required in order to fill out the details. In particular: Clarify connection to the Definition of Well-Defined Mapping You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by finding out more. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Research}} from the code. |
$\Box$
Linearity
Let $\mathbf x = \sequence {x_n}_{n \mathop \in \N}, \mathbf y = \sequence {y_n}_{n \mathop \in \N} \in \ell^\infty$.
Let $\lambda \in \C$.
- $\mathbf x + \lambda \mathbf y \in \ell^\infty$
Then:
\(\ds \map A {\mathbf x + \lambda \mathbf y}\) | \(=\) | \(\ds \tuple {x_1 + \lambda y_1, \frac {x_1 + x_2 + \lambda \paren {y_1 + y_2} } 2, \frac {x_1 + x_2 + x_3 + \lambda \paren {y_1 + y_2 + y_3} } 3, \ldots}\) | Definition of Cesàro Summation Operator | |||||||||||
\(\ds \) | \(=\) | \(\ds \tuple {x_1, \frac {x_1 + x_2} 2, \frac {x_1 + x_2 + x_3} 3, \ldots} + \tuple {\lambda y_1, \frac {\lambda \paren {y_1 + y_2} } 2, \frac {\lambda \paren {y_1 + y_2 + y_3} } 3, \ldots}\) | Space of Bounded Sequences with Pointwise Addition and Pointwise Scalar Multiplication on Ring of Sequences forms Vector Space | |||||||||||
\(\ds \) | \(=\) | \(\ds \tuple {x_1, \frac {x_1 + x_2} 2, \frac {x_1 + x_2 + x_3} 3, \ldots} + \lambda \tuple {y_1, \frac {y_1 + y_2} 2, \frac {y_1 + y_2 + y_3} 3, \ldots}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \map A {\mathbf x} + \lambda \map A {\mathbf y}\) | Definition of Cesàro Summation Operator |
By definition, $A$ is a linear transformation.
$\Box$
Continuity
Let $\mathbf x = \sequence {x_n}_{n \mathop \in \N} \in \ell^\infty$.
Then:
\(\ds \norm {A \mathbf x}_\infty\) | \(=\) | \(\ds \sup_{n \mathop \in \N} \size {\sum_{i \mathop = 1}^n \frac {x_i} n }\) | Definition of Cesàro Summation Operator | |||||||||||
\(\ds \) | \(\le\) | \(\ds \norm {\mathbf x}_\infty\) |
By continuity of linear transformations in normed vector space, $A$ is continuous.
$\Box$
Altogether:
- $A \in \map {CL} {\ell^\infty}$
$\blacksquare$
Sources
- 2017: Amol Sasane: A Friendly Approach to Functional Analysis ... (previous) ... (next): Chapter $\S 2.3$: The normed space $\map {CL} {X,Y}$. Operator norm and the normed space $\map {CL} {X, Y}$