Chain Rule for Partial Derivatives

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $F: \R^2 \to \R$ be a real-valued function of $2$ variables.

Let $X: \R^2 \to \R$ and $Y: \R^2 \to \R$ also be real-valued functions of $2$ variables.


Let $F = \map f {x, y}$ be such that:

\(\ds x\) \(=\) \(\ds \map X {u, v}\)
\(\ds y\) \(=\) \(\ds \map Y {u, v}\)


Then:

$F = \map F {u, v}$

and:

\(\ds \dfrac {\partial F} {\partial u}\) \(=\) \(\ds \dfrac {\partial f} {\partial x} \dfrac {\partial X} {\partial u} + \dfrac {\partial f} {\partial y} \dfrac {\partial Y} {\partial u}\)
\(\ds \dfrac {\partial F} {\partial v}\) \(=\) \(\ds \dfrac {\partial f} {\partial x} \dfrac {\partial X} {\partial v} + \dfrac {\partial f} {\partial y} \dfrac {\partial Y} {\partial v}\)




Corollary 1

Let $F = \map f {x, y}$ be a real-valued function from $\R^2$ to $\R$.

Let $x = \map X t$ and $y = \map Y t$ be real functions.


Then:

$F = \map F t$

and:

$\dfrac {\d F} {\d t} = \dfrac {\partial F} {\partial x} \dfrac {\d x} {\d t} + \dfrac {\partial F} {\partial y} \dfrac {\d Y} {\d t}$


Corollary 2

Let $F = \map f {x, y}$ be a real-valued function from $\R^2$ to $\R$.

Let $y = \map Y x$ be a real function.


Then:

$\dfrac {\d F} {\d x} = \dfrac {\partial F} {\partial x} + \dfrac {\partial F} {\partial y} \dfrac {\d Y} {\d x}$


Proof




Sources