Characterization of Paracompactness in T3 Space/Lemma 11

From ProofWiki
Jump to navigation Jump to search



Theorem

Let $X$ be a set.


Let $\AA$ and $\VV$ be sets of subsets of $X$.


For each $V \in \VV$, let:

$V^* = X \setminus \ds \bigcup \set{A \in \AA | A \cap V = \O}$


Let:

$\VV^* = \set{V^* : V \in \VV}$.


Then:

$\forall A \in \AA, V^* \in \VV^* : A \cap V^* \ne \O \implies A \cap V \ne \O$

Proof

We prove the contrapositive statement:

$\forall A \in \AA, V \in \VV^* : A \cap V = \O \implies A \cap V^* = \O$


Let $B \in \AA, V^* \in \VV^* : B \cap V = \O$.


Hence:

$B \in \set{A \in \AA : A \cap V = \O }$


From Set is Subset of Union:

$B \subseteq \ds \bigcup \set{A \in \AA : A \cap V = \O }$


We have:

\(\ds V^*\) \(=\) \(\ds X \setminus \bigcup \set {A \in \AA : A \cap V = \O }\) definition of $V^*$
\(\ds \) \(\subseteq\) \(\ds X \setminus B\) Set Difference with Subset is Superset of Set Difference


From Subset of Set Difference iff Disjoint Set:

$V^* \cap B = \O$


Since $B$ and $V^*$ were arbitrary:

$\forall A \in \AA, V^* \in \VV^* : A \cap V = \O \implies A \cap V^* = \O$


The result follows from Rule of Transposition.

$\blacksquare$